Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shedding light on variation in reproductive success through studies of population genetic structure in a Southeast Pacific Coast mussel

Abstract

Phylogeography often focuses on the spatial dimension of genetic diversity, rarely including the temporal dynamics occurring interannually among local populations, which can provide insight into past variations in reproductive success. Currently, there is an intense aquaculture industry of Mytilus spp. on the Southeast Pacific Coast which depends entirely on the spat released by natural populations forming a relevant and sensitive social-ecological system. Temporal and spatial spat variability from natural mussel beds could be related to interannual reproductive dynamics with variable reproductive success and recruitment, which leave genetic signatures. Temporal and spatial genetic structure was evaluated in six natural beds in the Southeast Pacific (from 39°25’S to 43°07’S) on the most abundant and widespread Mytilus lineage detected, Mytilus cf. chilensis, in 4 consecutive years. Analyses included data from >180 individuals per year, with a total of 751 (mitochondrial COI) and 747 (nuclear H1) individuals, respectively. Overall, both markers showed high haplotype diversity and low spatial and temporal genetic differentiation. Likely, the high dispersal capacity of Mytilus cf. chilensis maintains population homogeneity and prevents diversity erosion. The slight differences in genetic variance of COI were better explained by differences among sites (space), and conversely, the H1 genetic variance was better explained by interannual (temporal) comparisons, which could explain temporal variability in spat availability. This study highlights the important insights achieved with the evaluation of both temporal and spatial population genetic structures in marine species with high reproductive output, which can condition the success and sustainability of the relevant social-ecological system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of sampling sites of natural beds of Mytilus spp. in the southeast Pacific coast of Chile (northern Patagonia area).
Fig. 2: Maximum likelihood unrooted phylogram of 281 COI haplotypes of the Mytilus spp.
Fig. 3: Temporal and spatial networks of COI and H1 haplotypes in natural beds of Mytilus cf. chilensis.
Fig. 4: Temporal and spatial frequencies of COI and H1 haplotypes in natural beds in Mytilus cf. chilensis.
Fig. 5: Heatmap of a posteriori Mantel values of pairwise congruence among distance matrices (CADM) in Mytilus cf. chilensis for H1 data.

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession numbers are as follows: NCBI [accession: MZ773651–MZ773880 (COI) and MZ901916–MZ902024 (H1)].

References

  • Araneda C, Angel-Pardo M, Jimenez E, Longa A, Lee RS, Segura C et al. (2021) A comment on Giusti et al. (2020) Mussels (Mytilus spp.) products authentication: a case study on the Italian market confirms issues in species identification and arises concern on commercial names attribution. Food Control 107:379

    Google Scholar 

  • Araneda C, Larraín MA, Hecht B, Narum S (2016) Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol Evol 6:3632–3644

    Article  PubMed  PubMed Central  Google Scholar 

  • Astorga MP, Cárdenas L, Pérez M, Toro JE, Martínez V, Farías A et al. (2020) Complex spatial genetic connectivity of mussels Mytilus chilensis along the southeastern Pacific coast and its importance for resource management. J Shellfish Res 39:77–86

    Article  Google Scholar 

  • Astorga MP, Vargas J, Valenzuela A, Molinet C, Marín SL (2018) Population genetic structure and differential selection in mussel Mytilus chilensis. Aquac Res 49:919–927

    Article  CAS  Google Scholar 

  • Avendaño M, Cantillánez M, Le Pennec M, Varela C, Garcias C (2011) Temporal distribution of larvae of Mytilus chilensis (Hupé, 1854) (Mollusca: Mytilidae), in the interior sea of Chiloé, southern Chile. Lat Am J Aquat Res 39:416–426

    Article  Google Scholar 

  • Avila-Poveda OH, Abadia-Chanona QY, Alvarez-Garcia IL, Arellano M (2021) Plasticity in reproductive traits of an intertidal rocky shore chiton (Polyplacophora: Chitonida) under pre-ENSO and ENSO events. J Mollus Stud 97:eyaa033

    Article  Google Scholar 

  • Barria A, Gebauer P, Molinet C (2012) Spatial and temporal variability of mytilid larval supply in the Seno de Reloncaví, southern Chile. Rev Biol Mar Oceanogr 47:461–473

    Article  Google Scholar 

  • Barshis D, Sotka E, Kelly R, Sivasundar A, Menge B, Barth J et al. (2011) Coastal upwelling is linked to temporal genetic variability in the acorn barnacle Balanus glandula. Mar Ecol Prog Ser 439:139–150

    Article  Google Scholar 

  • Beaumont AR, Hawkins MP, Doig FL, Davies IM, Snow M (2008) Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders? J Exp Mar Biol Ecol 367:100–110

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D, Edwards D, Shaffer JP (2005) False discovery rate-adjusted multiple confidence. J Am Stat Assoc 100:469

    Article  Google Scholar 

  • Berger MS, Darrah AJ, Emlet RB (2006) Spatial and temporal variability of the early post-settlement survivorship and growth in the barnacle Balanus glandula along an estuarine gradient. J Exp Mar Biol Ecol 336:74–87

    Article  Google Scholar 

  • Bierne N, Bonhomme F, David P (2003) Habitat preference and the marine-speciation paradox. Proc R Soc Lond 270:1399–1406

    Article  Google Scholar 

  • Bitter MC, Kapsenberg L, Gattuso J-P, Pfister CA (2019) Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun 10:5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blunden J, Arndt DS (2016) State of the climate in 2015. B Am Meteorol Soc 97:S1–S275

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Brattström H, Johanssen A (1983) Ecological and regional zoogeography of the marine benthic fauna of Chile: Report N°. 49 of the Lund University Chile Expedition 1948–49. Sarsia 68:289–339

    Article  Google Scholar 

  • Brown SDJ, Collins RA, Boyer S, Lefort M, Malumbres-Olarte J, Vink CJ et al. (2012) SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Res 12:562–565

    Article  Google Scholar 

  • Burzyński A, Zbawicka M, Skibinski DOF, Wenne R (2006) Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetic 174:1081–1094

    Article  Google Scholar 

  • Calderón I, Pita L, Brusciotti S, Palacín C, Turon X (2012) Time and space: genetic structure of the cohorts of the common sea urchin Paracentrotus lividus in Western Mediterranean. Mar Biol 159:187–197

    Article  Google Scholar 

  • Campos B, Landaeta MF (2016) Moluscos planctónicos entre el fiordo Reloncaví y el golfo Corcovado, sur de Chile: ocurrencia, distribución y abundancia en invierno. R Biol Mar Oceanogr 51:527–539

    Article  Google Scholar 

  • Cantillánez M, Avendaño M, Thouzeau G, Le Pennec M (2005) Reproductive cycle of Argopecten purpuratus (Bivalvia: Pectinidae) in La Rinconada marine reserve (Antofagasta, Chile): response to environmental effects of El Niño and La Niña. Aquaculture 246:181–195

    Article  Google Scholar 

  • Coolen JWP, Boon AR, Crooijmans R, van Pelt H, Kleissen F, Gerla D et al. (2020) Marine stepping-stones: connectivity of Mytilus edulis populations between offshore energy installations. Mol Ecol 29:686–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couvray S, Coupé S (2018) Three-year monitoring of genetic diversity reveals a micro-connectivity pattern and local recruitment in the broadcast marine species Paracentrotus lividus. Heredity 120:110–124

    Article  PubMed  Google Scholar 

  • David P, Perdieu MA, Pernot AF, Jarne P (1997) Finegrained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51:1318–1322

    Article  PubMed  Google Scholar 

  • Debiasse MB, Nelson BJ, Hellberg ME (2014) Evaluating summary statistics used to test for incomplete lineage sorting: mito-nuclear discordance in the reef sponge Callyspongia vaginalis. Mol Ecol 24:225–238

    Article  Google Scholar 

  • Díaz C, Figueroa Y, Sobenes C (2011) Effect of different longline farming designs over the growth of Mytilus chilensis (Hupé, 1854) at Llico Bay, VIII Región of Bio-Bio, Chile. Aquac Eng 45:137–145

    Article  Google Scholar 

  • Díaz C, Sobenes C, Machino S (2019) Comparative growth of Mytilus chilensis (Hupé 1854) and Mytilus galloprovincialis (Lamarck 1819) in aquaculture longline system in Chile. Aquaculture 507:21–27

    Article  Google Scholar 

  • Díaz-Puente B, Pita A, Uribe J, Cuéllar-Pinzón J, Guiñez R, Presa P (2020) A biogeography-based management for Mytilus chilensis: the genetic hodgepodge of Los Lagos versus the pristine hybrid zone of the Magellanic ecotone. Aquat Conserv 30:412–425

    Article  Google Scholar 

  • Duarte C, Navarro JM, Acuña K, Torres R, Manríquez PH, Lardies MA et al. (2014) Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. J Sea Res 85:308–314

    Article  Google Scholar 

  • Duarte C, Navarro JM, Quijón PA, Loncon D, Torres R, Manríquez PH et al. (2018) The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): the prevalent role of salinity under current and predicted pCO2 scenarios. Environ Pollut 242:156–163

    Article  CAS  PubMed  Google Scholar 

  • Eldon B, Riquet F, Yearsley J, Jollivet D, Broquet T (2016) Current hypotheses to explain genetic chaos under the sea. Curr Zool 62:551–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Fernández JF, Ponce RD, Vásquez-Lavin F, Figueroa Y, Gelcich S, Desdner J (2018) Exploring typologies of artisanal mussel seed producers in southern Chile. Ocean Coast Manag 158:24–31

    Article  Google Scholar 

  • Flowers JM, Schroeter SC, Burton RS (2002) The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strogylocentrotus purpuratus. Evolution 56:1445–1453

    CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fuentes-Santos I, Labarta U (2015) Spatial patterns of larval settlement and early post-settlement survivorship of Mytilus galloprovincialis in Galician Ría (NW Spain). Effect on recruitment success. Reg Stud Mar Sci 2:1–10

    Google Scholar 

  • Gardner JP, Oyarzún PA, Toro JE, Wenne R, Zbawicka M (2021) Phylogeography of Southern Hemisphere blue mussels of the genus Mytilus: evolution, biosecurity, aquaculture and food labelling. Oceanogr Mar Biol 59:139–228

    Google Scholar 

  • Gardner JPA, Palmer NL (1998) Size-dependent, spatial and temporal genetic variation at a leucine aminopeptidase (LAP) locus among blue mussel (Mytilus galloprovincialis) populations along a salinity gradient. Mar Biol 132:275–281

    Article  CAS  Google Scholar 

  • Garrido-Ramos MA, Stewart DT, Sutherland BW, Zouros E (1998) The distribution of male-transmitted and female-transmitted mitochondrial DNA types in somatic tissues of blue mussels: implications for the operation of doubly uniparental inheritance of mitochondrial DNA. Genome 41:818–824

    Article  CAS  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ, Heip CH (2007). Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603

  • Gelcich S, Hughes TP, Olsson P, Folke C, Defeo O, Fernández M et al. (2010) Navigating transformations in governance of Chilean marine coastal resources. Proc Natl Acad Sci USA 107:16794–16799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gérard K, Bierne N, Borsa P, Chenuil A, Féral JP (2008) Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Mol Phylogenet Evol 49:84–91

    Article  PubMed  Google Scholar 

  • Gilg MR, Hilbish TJ (2003) Spatio-temporal patterns in the genetic structure of recently settled blue mussels (Mytilus spp.) across a hybrid zone. Mar Biol 143:679–690

    Article  Google Scholar 

  • Gilg MR, Martin L, Fernandez N, Murphy C, Walsh C, Rognstad RL et al. (2016) Temporal patterns in allele frequencies of the gamete-recognition locus M7 lysin within a population of Mytilus galloprovincialis in southwestern England. J Mollusca Stud 82:542–549

    Article  Google Scholar 

  • Giusti A, Tosi F, Tinacci L, Guardone L, Corti I, Arcangeli G et al. (2020) Mussels (Mytilus spp.) products authentication: a case study on the Italian market confirms issues in species identification and arises concern on commercial names attribution. Food Control 118:107379

    Article  CAS  Google Scholar 

  • González HE, Castro L, Daneri G, Iriarte JL, Silva N, Vargas CA et al. (2011) Seasonal plankton variability in Chilean Patagonia fjords: carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Cont Shelf Res 31:225–243

    Article  Google Scholar 

  • Gonzalez-Poblete E, Hurtado CF, Rojo C, Normabuena R (2018) Blue mussel aquaculture in Chile: small- or large-scale industry? Aquaculture 493:113–122

    Article  Google Scholar 

  • Han Z, Mao Y, Shui B, Yanagimoto T, Gao T (2016) Genetic structure and unique origin of the introduced blue mussel Mytilus galloprovincialis in the north-western Pacific: clues from mitochondrial cytochrome c oxidase I (COI) sequences. Mar Freshw Res 68:263–269

    Article  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Bernal-Ramírez JH, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagurus auratus). Proc Natl Acad Sci USA 99:11742–11747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haye PA, Muñoz-Herrera NC (2013) Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol Biol 13:1–15

    Article  Google Scholar 

  • Haye PA, Turon X, Segovia NI (2021) Time or Space? Relative importance of geographic distribution and interannual variation in three lineages of the ascidian Pyura chilensis in the Southeast Pacific coast. Front Mar Sci 8:657411

    Article  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont A (ed). Genetics and evolution of aquatic organisms. Chapman and Hall, London, p 1222–1344

    Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproduction success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002

    Article  Google Scholar 

  • Hilbish T, Carson E, Plante J, Weaver L, Gilg M (2002) Distribution of Mytilus edulis, M. galloprovincialis, and their hybrids in open-coast populations of mussels in southwestern England. Mar Biol 140:137–142

    Article  Google Scholar 

  • Jackson TM, Roegner GC, O’Malley KG (2017) Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol Ecol 27:352–368

    Article  PubMed  Google Scholar 

  • Johnson MS, Black R (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383

    Article  PubMed  Google Scholar 

  • Kesäniemi JE, Mustonen M, Biström C, Hansen B, Knott KE (2014) Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity. BMC Evol Biol 14:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Koehn RK, Milkman R, Mitton JB (1976) Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30:2–32

    Article  PubMed  Google Scholar 

  • Lara C, Saldías GS, Tapia FJ, Iriarte JL, Broitman BR (2016) Interannual variability in temporal patterns of Chlorophyll–a and their potential influence on the supply of mussel larvae to inner waters in northern Patagonia (41–44°S). J Mar Syst 155:11–18

    Article  Google Scholar 

  • Larmuseau MHD, Raeymaekers JAM, Hellemans B, Van Houdt JKJ, Volckaert FAM (2010) Mito-nuclear discordance in the degree of population differentiation in a marine goby. Heredity 105:532–542

    Article  CAS  PubMed  Google Scholar 

  • Larraín MA, Díaz NF, Lamas C, Uribe C, Jilberto F, Araneda C (2015) Heterologous microsatellite-based genetic diversity in blue mussel (Mytilus chilensis) and differentiation among localities in southern Chile. Lat Am J Aquat Res 5:998–1010

    Google Scholar 

  • Larraín MA, González P, Pérez C, Araneda C (2019) Comparison between single and multi-locus approaches for specimen identification in Mytilus mussels. Sci Rep 9:1–13

    Article  Google Scholar 

  • Larraín MA, Zbawicka M, Araneda C, Gardner JPA, Wenne R (2017) Native and invasive taxa on the Pacific coast of South America: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.). Evol Appl 11:298–311

    Article  Google Scholar 

  • LaVigne M, Nurhati IS, Cobb KM, McGeregor HV, Sinclair D, Sherrell RM (2013) Systematic ENSO-driven nutrient variability recorded by central equatorial Pacific corals. Geophys Res Lett 40:3956–3961

    Article  Google Scholar 

  • Lee HJ, Boulding EG (2009) Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effects of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol Ecol 18:2165–2184

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Ni G, Shin J, Kim T, Kern EMA, Kim Y et al. (2021) Phylogeography of Mytilisepta virgate (Mytilidae: Bivalvia) in the northwestern Pacific: cryptic mitochondrial linages and mito-nuclear discordance. Mol Phylogenet Evol 157:107067

    Article  Google Scholar 

  • Legendre P, Lapointe FJ (2004) Assessing congruence among distance matrices: single‐malt scotch whiskies revisited. Aust N Z J Stat 46:615–629

    Article  Google Scholar 

  • Li G, Hedgecock D (1998) Genetic heterogeneity detected by PCR-SSCP, among samples of Pacific oysters (Crassostrea gigas Thunberg), supports the hypothesis of a large variance in reproductive success. Can J Fish Aquat Sci 55:1025–1033

    Article  CAS  Google Scholar 

  • Ludford A, Cole VJ, Porri F, McQuaid CD, Nakin MDV, Erlandsson J (2012) Testing source-sink theory: the spill-over of mussel recruits beyond marine protected areas. Lands Ecol 27:859–868

    Article  Google Scholar 

  • Manríquez PH, Guiñez R, Olivares A, Clarke M, Castilla JC (2018) Effects of inter-annual temperature variability, including ENSO and post-ENSO events, on reproductive traits in the tunicate Pyura praeputialis. Mar Biol Res 14:462–477

    Article  Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough ME, Swearer S (2010) Phenotype-environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140

    Article  CAS  PubMed  Google Scholar 

  • McKeown NJ, Hauser L, Shaw PW (2017) Microsatellite genotyping of brown crab Cancer pagurus reveals fine scale selection and ‘non-chaotic’ genetic patchiness within a high gene flow system. Mar Ecol Progr Ser 566:91–103

    Article  Google Scholar 

  • Moberg PE, Burton RS (2000) Genetic heterogeneity among adult and recruit red sea urchins, Strongylocentrotus franciscanus. Mar Biol 136:773–784

    Article  CAS  Google Scholar 

  • Molina V, Cornejo-D’Ottone M, Soto EH, Quiroga E, Alarcón G, Silva D et al. (2021) Biogeochemical responses and seasonal dynamics of the benthic boundary layer microbial communities during the El Niño 2015 in an eastern boundary upwelling system. Water 12:180

    Article  Google Scholar 

  • Molinet C, Astorga M, Cares L, Diaz M, Hueicha K, Marín S et al. (2021) Vertical distribution patterns of larval supply and spatfall of three species of Mytilidae in Chilean fjord used for mussel farming: insights for mussel spatfall efficiency. Aquaculture 535:736341

    Article  CAS  Google Scholar 

  • Molinet C, Díaz M, Marín SL, Astorga MP, Ojeda M, Cares L et al. (2017) Relation of mussel spatfall on natural and artificial substrates: analysis of ecological implications ensuring long-term success and sustainability for mussel farming. Aquaculture 467:211–218

    Article  Google Scholar 

  • Molinet CA, Díaz MA, Arriagada CB, Cares LE, Marín SL, Astroga MP et al. (2015) Spatial distribution pattern of Mytilus chilensis beds in the Reloncaví fjord: hypothesis on associated processes. Rev Chil Hist Nat 88:1–12

    Google Scholar 

  • Narváez DA, Vargas CA, Cuevas LA, García-Loyola SA, Lara C, Segura C et al. (2019) Dominant scales of subtidal variability in coastal hydrography of the Northern Chilean Patagonia. J Mar Syst 193:59–73

    Article  Google Scholar 

  • Navarro JM (1988) The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782)(Bivalvia: Mytilidae). J Exp Mar Biol Ecol 122:19–33

    Article  Google Scholar 

  • Ng W, Leung FCC, Chak STC, Slingsby G, Williams GA (2010) Temporal genetic variation in populations of the limpet Cellana grata from Hong Kong shores. Mar Biol 157:325–337

    Article  Google Scholar 

  • Norrie C, Dunphy B, Roughan M, Weppe S, Lundquist C (2020) The spill-over from aquaculture may provide larval subsidy for the restoration of mussel reefs. Aquac Env Interact 12:231–249

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2020) vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan

  • Owen EF, Rawson PD (2013) Small-scale spatial and temporal genetic structure of the Atlantic sea scallop (Placopecten magellanicus) in the inshore Gulf of Maine revealed sing AFLPs. Mar Biol 160:3015–3025

    Article  Google Scholar 

  • Oyarzún PA, Toro JE, Nuñez JJ, Suárez-Villota EY, Gardner JPA (2021) Blue mussels of the Mytilus edulis species complex from South America: the application of species delimitation models to DNA sequence variation. PLoS ONE 16:e0256961

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Schliep K (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  CAS  PubMed  Google Scholar 

  • Pedersen EM, Hunt HL, Scheibling RE (2000) Temporal genetic heterogeneity within a developing mussel (Mytilus trossulus and M. edulis) assemblage. J Mar Biol Assoc UK 80:843–854

    Article  CAS  Google Scholar 

  • Pérez-Portela R, Wangensteen OS, Garcia-Cisneros A, Valero-Jiménez C, Palacín C, Turón X (2018) Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122:244–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickett T, David AA (2018) Global connectivity patterns of the notoriously invasive mussel, Mytilus galloprovincialis Lmk using archived CO1 sequence data. BMC Res Notes 11:1–7

    Article  Google Scholar 

  • Pineda J, Porri F, Starczak V, Blythe J (2010) Causes of decoupling between larval supply and settlement and consequences for understanding recruitment and population connectivity. J Exp Mar Biol Ecol 392:9–21

    Article  Google Scholar 

  • Pinsky ML, Palumbi SR (2014) Meta‐analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39

    Article  PubMed  Google Scholar 

  • Plough LV, Shin G, Hedgecock D (2016) Genetic inviability is a major driver of type III survivorship in experimental families of a highly fecund marine bivalve. Mol Ecol 25:895–910

    Article  CAS  PubMed  Google Scholar 

  • Quintero-Galvis JF, Bruning P, Paleo-López R, Gomez D, Sánchez R, Cárdenas L (2020) Temporal variation in the genetic diversity of a marine invertebrate with long larval phase, the muricid gastropod Concholepas. J Exp Mar Biol Ecol 530-531:151432

    Article  Google Scholar 

  • R Development Core Team R (2022) A language and environment for statistical computing. R Foundation for Statistical Computing. www.r-project.org

  • Rawson PD, Secor C, Hilbish TJ (1996) The effects of natural hybridization on the regulation of doubly uniparental mtDNA Inheritance in blue mussels (Mytilus spp.). Genetics 144:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riginos C, Henzler CM (2008) Patterns of mtDNA diversity in North Atlantic populations of the mussel Mytilus edulis. Mar Biol 155:399–412

    Article  CAS  Google Scholar 

  • Robainas-Barcia A, Espinosa López G, Hernández D, García-Machado E (2008) Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci. Mol Ecol 14:2933–2942

    Article  Google Scholar 

  • Rojas-Hernandez N, Veliz D, Riveros MP, Fuentes JP, Pardo L (2016) Highly connected populations and temporal stability in allelic frequencies of a harvested crab from the southern Pacific coast. PLoS ONE 11:e0166029

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA Sequence Polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Ruiz M, Tarifeño E, Llanos-Rivera A, Padget C, Campos B (2008) Temperature effect in the embryonic and larval development of the mussel, Mytilus galloprovincialis (Lamarck, 1819). Rev Biol Mar Oceanogr 42:51–61

    Google Scholar 

  • Salloum PM, Silva MJ, Solferini VN (2019) Fine-scale genetic structure of the periwinkle Echinolittorina lineolata (Gastropoda: Littorinidae): the interplay between space and time. J Moll Stud 85:73–78

    Article  Google Scholar 

  • San Martin VA, Vásquez-Lavin F, Ponce Oliva RD, Lerdón XP, Rivera A, Serramalera L et al. (2020) Exploring the adaptive capacity of the mussel mariculture industry in Chile. Aquaculture 519:734856

    Article  Google Scholar 

  • Santoso A, Mcphaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys 55:1079–1129

    Article  Google Scholar 

  • Sernapesca (2020) Anuario estadístico de pesca. http://www.sernapesca.cl/. Accessed Oct 2022

  • Sernapesca (2021) Anuario estadístico de pesca. http://www.sernapesca.cl/. Accessed Oct 2022

  • Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE, Warner RR et al. (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Natl Acad Sci USA 105:8974–8979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers HA, Silva N (2006) Comité Oceanográfico Nacional—Pontificia. Universidad Católica de Valparaíso, Valparaíso, p 53–58

    Google Scholar 

  • Simon A, Arbiol C, Nielsen EE, Couteau J, Sussarellu R, Burgeot T et al. (2020) Replicated anthropogenic hybridisations reveal parallel patterns of admixture in marine mussels. Evol Appl 13:575–599

    Article  PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinacci L, Guidi A, Toto A, Guardone L, Giusti A, D’Amico P et al. (2018) DNA barcoding for the verification of supplier’s compliance in the seafood chain: how the lab can support companies in ensuring traceability. Ital J Food Saf 7:6894

    PubMed  PubMed Central  Google Scholar 

  • Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930

    Article  CAS  PubMed  Google Scholar 

  • Toro JE, Castro GC, Ojeda JA, Vergara AM (2006) Allozymic variation and differentiation in the Chilean blue mussel, Mytilus chilensis, along its natural distribution. Genet Mol Biol 29:174–179

    Article  CAS  Google Scholar 

  • Toro JE, Ojeda JA, Vergara AM (2004) The genetic structure of Mytilus chilensis (Hupé, 1854) populations along the Chilean coast based on RAPDs analysis. Aquac Res 35:1466–1471

    Article  CAS  Google Scholar 

  • Toro JE, Oyarzún PA, Peñaloza C, Alcapán A, Videla V, Tillería et al. (2012) Production and performance of larvae and spat of pure and hybrid species of Mytilus chilensis and M. galloprovincialis from laboratory crosses. Lat Am J Aquat 40:243–247

    Article  Google Scholar 

  • Toro JE, Sastre D (1995) Induced triploidy in the Chilean blue mussel, Mytilus chilensis (Hupe 1854), and performance of triploid larvae. J Shellfish Res 14:161–164

    Google Scholar 

  • Uriarte I (2008) Estado actual del cultivo de moluscos bivalvos en Chile. In: Lovatelli A, Uriarte I, Farias A (eds). Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura. FAO, Rome, Italy, p 61–76

    Google Scholar 

  • Vadopalas B, Leclair LL, Bentzen P (2012) Temporal genetic similarity among year-classes of the pacific geoduck clan (Panopea generosa Gould 1850): a species exhibiting spatial genetic patchiness. J Shellfish Res 31:697–709

    Article  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    Article  PubMed  Google Scholar 

  • Vendrami DLJ, Peck LS, Clark MS, Eldon B, Meredith M, Hoffman JI (2021) Sweepstakes reproductive success and collective dispersal produce chaotic genetic patchiness in a broadcast spawner. Sci Adv 7:eabj4713

    Article  PubMed  PubMed Central  Google Scholar 

  • Villacorta-Rath C, Souza CA, Murphy NP, Green BS, Gardner C, Strugnell JM (2018) Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster. Mol Ecol 27:54–65

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Winter JE, Toro JE, Navarro JM, Valenzuela GS, Chaparro OR (1984) Recent developments, status, and prospects of molluscan aquaculture on the Pacific coast of South America. Aquaculture 39:95–134

    Article  Google Scholar 

  • Zardi GI, McQuaid CD, Teske PR, Barker NP (2007) Unexpected genetic structure of mussel populations in South Africa: indigenous Perna perna and invasive Mytilus galloprovincialis. Mar Ecol Progr Ser 337:135–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Natalia Muñoz, Francisca Gálvez, Daniel Aliste, and especially Raúl Vera for their assistance with fieldwork and sample processing. We also extend our appreciation to Carolina Oliva, Raúl Vera, and in particular, Paulina Gyorgy for their help with DNA extractions and PCR. We would like to acknowledge the editor, Bastiaan Star, for their valuable suggestions, as well as four anonymous reviewers whose comments helped improve the final version of this manuscript. This study was funded by the Chilean National Fund for Scientific and Technological Development through Grants FONDECYT 1140862 and FONDECYT Iniciación 11220913, Universidad Católica del Norte, and the Millennium Science Initiative Program (Code ICN2019_015), Chile.

Author information

Authors and Affiliations

Authors

Contributions

PAH conceived the idea and designed the study. PAH and NIS contributed to sample collection, laboratory work, and acquisition of data, conceived and designed the data analyses, and wrote the manuscript.

Corresponding author

Correspondence to Nicolás I. Segovia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Bastiaan Star.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haye, P.A., Segovia, N.I. Shedding light on variation in reproductive success through studies of population genetic structure in a Southeast Pacific Coast mussel. Heredity 130, 402–413 (2023). https://doi.org/10.1038/s41437-023-00615-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00615-8

Search

Quick links