Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca)

Abstract

Interspecific hybridization has varied consequences for offspring fitness, with implications for the maintenance of species integrity. Hybrid vigour, when it occurs, can peak in first-generation (F1) hybrids and then decline in advanced-generation (F2+) hybrids. This hybrid breakdown, together with the processes affecting patterns of hybridization and hybrid fitness, determine the evolutionary stability of hybrid zones. An extensive hybrid zone in North America involving the cattails Typha latifolia, T. angustifolia, and their invasive hybrid T. × glauca is characterized by hybrid vigour among F1s, but the fitness of advanced-generation hybrids has not been studied. We compared seed germination and plant growth of T. latifolia (parental L), F1 T. × glauca (F1), hybrid backcrosses to T. angustifolia (bcA) and T. latifolia (bcL), and advanced-generation (F2) hybrids. Consistent with expectations under hybrid breakdown, we found reduced plant growth for F2 hybrids in comparison with F1s (plant height and above-ground biomass) and parental Ls (above-ground biomass). Backcrossed hybrids had intermediate measures of plant growth and bcLs were characterized by reduced seed germination in comparison with parental Ls. Hybrid breakdown could make the formation of F1s in North America finite because (1) hybridization among cattails is asymmetric, with T. angustifolia but not T. latifolia subject to genetic swamping, and (2) T. angustifolia is less common and subject to competitive displacement by F1s. Hybrid breakdown is therefore expected to reduce hybrid frequencies over time, contributing to the long-term maintenance of T. latifolia – the only native cattail in the study region.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Patterns of seed production and plant growth for parental and hybrid cattails following hand crossing.

Data availability

The data and R scripts are available on the Dryad Digital Repository at https://doi.org/10.5061/dryad.q83bk3jm2.

References

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N et al. (2013) Hybridization and speciation. J Evol Biol 26:229–246

    Article  CAS  PubMed  Google Scholar 

  • Abbott RJ, Brennan AC (2014) Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc B 369:20130346

    Article  Google Scholar 

  • Abbott RJ (2017) Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J Syst Evol 55:238–258

    Article  Google Scholar 

  • Ahee J (2013) The spatial dynamics of wind pollination in broadleaf cattail (Typha latifolia). MSc Thesis. Trent University, Canada

    Google Scholar 

  • Ahee JE, Van Drunen WE, Dorken ME (2015) Analysis of pollination neighbourhood size using spatial analysis of pollen and seed production in broadleaf cattail (Typha latifolia). Botany 93:91–100

    Article  Google Scholar 

  • Bansal S, Lishawa SC, Newman S, Tangen BA, Wilcox D, Albert D et al. (2019) Typha (cattail) invasion in North American wetlands: Biology, regional problems, impacts, ecosystem services, and management. Wetlands 39:645–684

    Article  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  CAS  PubMed  Google Scholar 

  • Barton NH (2008) The effect of a barrier to gene flow on patterns of geographic variation. Genet Res 90:139–149

    Article  CAS  Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Ann Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2016) lme4: Linear mixed-effects models using Eigen and S4. R package version o1.1–13, http://CRAN.R-project.org/package-lme4

  • Behm JE, Ives AR, Boughman JW (2010) Breakdown in postmating isolation and the collapse of a species pair through hybridization. Am Nat 175:11–26

    Article  PubMed  Google Scholar 

  • Bersweden L, Viruel J, Schatz B, Harland J, Gargiulo R, Cowan RS et al. (2021) Microsatellites and petal morphology reveal new patterns of admixture in Orchis hybrid zones. Am J Bot 108:1388–1404

    Article  PubMed  Google Scholar 

  • Buggs RJA (2007) Empirical study of hybrid zone movement. Heredity 99:301–312

    Article  CAS  PubMed  Google Scholar 

  • Bunbury-Blanchette AL, Freeland JR, Dorken ME (2015) Hybrid Typha× glauca outperforms native T. latifolia under contrasting water depths in a common garden. Basic Appl Ecol 16:394–402

    Article  Google Scholar 

  • Burton RS, Pereira RJ, Barreto FS (2013) Cytonuclear genomic interactions and hybrid breakdown. Ann Rev Ecol Evol Syst 44:281–302

    Article  Google Scholar 

  • Buitink J, Claessens MM, Hemminga MA, Hoekstra FA (1998) Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Phys 118:531–541

    Article  CAS  Google Scholar 

  • Ciotir C, Kirk H, Row JR, Freeland JR (2013) Intercontinental dispersal of T. angustifolia and T. latifolia between Europe and North America has implications for the Typha invasions. Biol Invasions 15:1377–1390

    Article  Google Scholar 

  • Ciotir C, Szabo J, Freeland J (2017) Genetic characterization of cattail species and hybrids (Typha spp.) in Europe. Aquat Bot 141:51–59

    Article  CAS  Google Scholar 

  • Curry CM (2015) An integrated framework for hybrid zone models. Evol Biol 42:359–365

    Article  Google Scholar 

  • Durán-Castillo M, Hudson A, Wilson Y, Field DL, Twyford AD (2022) A phylogeny of Antirrhinum reveals parallel evolution of alpine morphology. N. Phytol 233:1426–1439

    Article  CAS  Google Scholar 

  • Fishman L, Sweigart AL (2018) When two rights make a wrong: The evolutionary genetics of plant hybrid incompatibilities. Ann Rev Plant Biol 69:707–731

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2019) An R Companion to Applied Regression, 3rd edn. Sage, Thousand Oaks, CA

    Google Scholar 

  • Freeland J, Ciotir C, Kirk H (2013) Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions. Biol Invasions 15:2651–2665

    Article  Google Scholar 

  • Freeland JR, Ciotir C, Wensink L, Dorken M (2017) Widespread cytonuclear discordance in narrow-leaved cattail (Typha angustifolia) does not explain the dominance of its invasive hybrid (Typha × glauca). Hydrobiologia 792:53–65

    Article  CAS  Google Scholar 

  • Grace JB, Harrison JS (1986) The biology of Canadian weeds: 73. Typha latifolia L., Typha angustifolia L. and Typha x glauca. Can J Plan Sci 361–379

  • Irwin DE (2020) Assortative mating in hybrid zones is remarkably ineffective in promoting speciation. Am Nat 195:E150–E167

    Article  PubMed  Google Scholar 

  • Johansen‐Morris AD, Latta RG (2006) Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation. Evolution 60:1585–1595

    Article  PubMed  Google Scholar 

  • Kirk H, Connolly C, Freeland JR (2011) Molecular genetic data reveal hybridization between Typha angustifolia and Typha latifolia across a broad spatial scale in eastern North America. Aquat Bot 95:189–193

    Article  Google Scholar 

  • Kuehn MM, Minor JE, White BN (1999) An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Mol Ecol 8:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Larkin DJ, Freyman MJ, Lishawa SC, Geddes P, Tuchman NC (2012) Mechanisms of dominance by the invasive hybrid cattail Typha× glauca. Biol Invasions 14:65–77

    Article  Google Scholar 

  • Lenth R, Singmann H, Love J, Buerkner P, Herve M (2021) Emmeans: Estimated marginal means, aka least-squares means. R package version, 1.7.1–1

  • Marques I, Nieto Feliner G, Martins‐Loução MA, Fuertes Aguilar J (2011) Fitness in Narcissus hybrids: low fertility is overcome by early hybrid vigour, absence of exogenous selection and high bulb propagation. J Ecol 99:1508–1519

    Article  Google Scholar 

  • Mitchell N, Luu H, Owens GL, Rieseberg LH, Whitney KD (2022) Hybrid evolution repeats itself across environmental contexts in Texas sunflowers (Helianthus). Evolution https://doi.org/10.1111/evo.14536

  • McKenzie‐Gopsill A, Kirk H, Van Drunen W, Freeland JR, Dorken ME (2012) No evidence for niche segregation in a North American Cattail (Typha) species complex. Ecol Evol 2:952–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieper SJ, Nicholls AA, Freeland JR, Dorken ME (2017) Asymmetric hybridization in cattails (Typha spp.) and its implications for the evolutionary maintenance of native Typha latifolia. J Hered 108:479–487

    Article  PubMed  Google Scholar 

  • Pieper SJ, Freeland JR, Dorken ME (2018) Coexistence of Typha latifolia, T. angustifolia (Typhaceae) and their invasive hybrid is not explained by niche partitioning across water depths. Aquat Bot 144:46–53

    Article  Google Scholar 

  • Pieper S, Dorken M, Freeland J (2020) Genetic structure in hybrids and progenitors provides insight into processes underlying an invasive cattail (Typha× glauca) hybrid zone. Heredity 124:714–725

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Development Team (2021) R: A language and environment for statistical computing v. 4.1.0. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

    Google Scholar 

  • Rasband WS (2014) ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/,1997-2014

    Google Scholar 

  • Rendón-Anaya M, Wilson J, Sveinsson S, Fedorkov A, Cottrell J, Bailey MES et al. (2021) Adaptive introgression facilitates adaptation to high latitudes in European Aspen (Populus tremula L.). Mol Biol Evol 38:5034–5050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rieseberg LH (2006) Hybrid speciation in wild sunflowers. Ann Mo Bot 93:34–48

    Article  Google Scholar 

  • Ross RIC, Ågren JA, Pannell JR (2012) Exogenous selection shapes germination behaviour and seedling traits of populations at different altitudes in a Senecio hybrid zone. Ann Bot 110:1439–1447

    Article  PubMed  PubMed Central  Google Scholar 

  • Runemark A, Vallejo-Marin M, Meier JI (2019) Eukaryote hybrid genomes. PLoS Genet 15:e1008404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith SG (1967) Experimental and natural hybrids in North American Typha (Typhaceae). Am Midl Nat 78:257–287

    Article  Google Scholar 

  • Snow AA, Travis SE, Wildová R, Fér T, Sweeney PM, Marburger JE et al. (2010) Species‐ specific SSR alleles for studies of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. Am J Bot 97:2061–2067

    Article  PubMed  Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251

    Google Scholar 

  • Tangen B, Bansal S, Freeland J, Travis S, Wasko J, McGonigle et al. (2021) Distributions of native and invasive Typha (cattail) throughout the Prairie Pothole Region of North America. Wetl Ecol Manag 30:1–17

    Article  CAS  Google Scholar 

  • Tiffin P, Olsen S, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc Lond B 268:861–867

    Article  CAS  Google Scholar 

  • Tisshaw K, Freeland J, Dorken M (2020) Salinity, not genetic incompatibilities, limits the establishment of the invasive hybrid cattail Typha × glauca in coastal wetlands. Ecol Evol 10:12091–12103

    Article  PubMed  PubMed Central  Google Scholar 

  • Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S et al. (2016) Hybridization and extinction. Evol Appl 9:892–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travis SE, Marburger JE, Windels S, Kubatova B (2010) Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. J Ecol 98:7–16

    Article  Google Scholar 

  • Travis SE, Marburger JE, Windels SK, Kubátová B (2011) Clonal structure of invasive cattail (Typhaceae) stands in the Upper Midwest Region of the US. Wetlands 31:221–228

    Article  Google Scholar 

  • Tsyusko‐Omeltchenko OV, Schable NA, Smith MH, Glenn TC (2003) Microsatellite loci isolated from narrow‐leaved cattail Typha angustifolia. Mol Ecol Notes 3:535–538

    Article  CAS  Google Scholar 

  • Tuchman NC, Larkin DJ, GeddesP, Wildova R, Jankowski K, Goldberg DE (2009) Patterns of environmental change associated with Typha × glauca invasion in a Great Lakes coastal wetland. Wetlands 29:964–975

    Article  Google Scholar 

  • Zalmat AS, Sotola AV, Nice CC, Martin NH (2021) Genetic structure in Louisiana Iris species reveals patterns of recent and historical admixture. Am J Bot 108:2257–2268

    Article  PubMed  Google Scholar 

  • Zapfe L, Freeland JR (2015) Heterosis in invasive F1 cattail hybrids (Typha× glauca). Aquat Bot 125:44–47

    Article  Google Scholar 

  • Zhou B, Yu D, Ding Z, Xu X (2016) Comparison of genetic diversity in four Typha species (Poales, Typhaceae) from China. Hydrobiologia 770:117–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Kathryn Tisshaw, Sara Pieper, and Verena Sesin for assistance in the field and in the lab, Avery Chambers and Braidy Chambers for assistance with Fig. S1, and three anonymous referees for constructive comments.

Funding

This work was funded by the Natural Sciences and Engineering Research Council via Discovery Grants to MED (RGPIN-2018-04866) and JRF (RGPIN-2017-04371).

Author information

Authors and Affiliations

Authors

Contributions

VVB contributed to the study design, data analysis and manuscript writing, and was responsible for conducting the hand crosses and for all data collection in the field and greenhouse. JRF was responsible for designing the study, supervising the work, and contributed to writing the manuscript. MED contributed to the study design and supervision, and was responsible for data analysis and manuscript writing.

Corresponding author

Correspondence to Marcel E. Dorken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Matthew Hartfield

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhargav, V.V., Freeland, J.R. & Dorken, M.E. Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca). Heredity 129, 195–201 (2022). https://doi.org/10.1038/s41437-022-00557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-022-00557-7

Search

Quick links