Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neutralisation of adeno-associated virus transduction by human vitreous humour

Abstract

Neutralising antibodies (NAbs), caused by past adeno-associated virus (AAV) infection, represent a critical challenge for AAV-mediated gene therapy, with even low NAb titres capable of inhibiting gene transfer, however in protein-rich environments such as the vitreous it is expected that other constituents could also interact with the transduction process. Inhibition of AAV2/2, AAV2/5, AAV2/6 and AAV2/8 transduction by human vitreous humour (VH) obtained from 80 post-mortem eye cups was investigated in this report, with clinically relevant vitreous dilutions as low as 1:2. Unexpectedly, the highest prevalence of inhibition of transduction was observed against AAV2/6, with 66% of tested samples displaying neutralisation at a 1:2 VH dilution. Only two samples showed inhibition of AAV2/8, indicating this serotype is an attractive vector for use in non-vitrectomised eyes of unscreened individuals. Levels of anti-AAV NAbs observed in the VH were much lower than previously observed in serum of a similar Australian population. Among ten tested eye cup pairs, we observed only small variation in anti-AAV NAbs levels between the left and right eye cups. Interaction with 1:2 diluted VH had an augmentation effect on AAV2/8 transduction (p = 0.004), a phenomenon which was not due to albumin or transferrin and which, if developed, might benefit the use of AAV2/8 in clinical settings.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Percentage of samples that display anti-AAV neutralising activity at 1:2–1:10,000 VH dilutions.
Fig. 2: Vitreous humour neutralisation titres.
Fig. 3: Vitreous humour neutralisation prevalence of AAV serotypes among men and women.
Fig. 4: Vitreous humour neutralising activity between men (n= 40–42) and women (n = 36–38) at 1:2 and 1:10 dilutions.
Fig. 5: Co-prevalence of vitreous humour neutralisation for AAV2/2, AAV2/5, AAV2/6 and AAV2/8 at 1:2 and 1:10 dilution.
Fig. 6: Effect of vitreous humour, albumin and transferrin on AAV vector transduction.

References

  1. Smalley E. First AAV gene therapy poised for landmark approval. Nat Biotechnol. 2017;35:998–9.

    CAS  PubMed  Google Scholar 

  2. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.

    CAS  PubMed  Google Scholar 

  3. de Moraes G, Layton CJ. Therapeutic targeting of diabetic retinal neuropathy as a strategy in preventing diabetic retinopathy. Clin Exp Ophthalmol. 2016;44:838–52.

    PubMed  Google Scholar 

  4. Rodrigues GA, Shalaev E, Karami TK, Cunningham J, Slater NK, Rivers HM. Pharmaceutical Development of AAV-Based Gene Therapy Products for the Eye. Pharm Res. 2019;36:29.

    Google Scholar 

  5. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17:2096–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD, et al. Intravitreal injection of AAV2 transduces macaque inner retina. Investig Ophthalmol Vis Sci. 2011;52:2775–83.

    CAS  Google Scholar 

  7. Lau PE, Jenkins KS, Layton CJ. Current evidence for the prevention of endophthalmitis in anti-VEGF intravitreal injections. J Ophthalmol. 2018;2018:8567912.

    PubMed  PubMed Central  Google Scholar 

  8. Worst J, Los L. Comparative anatomy of the vitreous body in rhesus monkeys and man. Doc Ophthalmol. 1992;82:169–78.

    CAS  PubMed  Google Scholar 

  9. Murthy KR, Goel R, Subbannayya Y, Jacob HK, Murthy PR, Manda SS, et al. Proteomic analysis of human vitreous humor. Clin Proteom. 2014;11:29.

    Google Scholar 

  10. Reich M, Dacheva I, Nobl M, Siwy J, Schanstra JP, Mullen W, et al. Proteomic analysis of vitreous humor in retinal vein occlusion. PloS one. 2016;11:e0158001.

    PubMed  PubMed Central  Google Scholar 

  11. Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, et al. Proteome analysis of human vitreous proteins. Mol Cell Proteom. 2003;2:1177–87.

    CAS  Google Scholar 

  12. Angi M, Kalirai H, Coupland SE, Damato BE, Semeraro F, Romano MR. Proteomic analyses of the vitreous humour. Mediat Inflamm. 2012;2012:148039.

    Google Scholar 

  13. Bévalot F, Cartiser N, Bottinelli C, Fanton L, Guitton J. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review. Forensic Toxicol. 2016;34:12–40.

    PubMed  Google Scholar 

  14. Scott JE. The chemical morphology of the vitreous. Eye 1992;6:553.

    PubMed  Google Scholar 

  15. Le Goff M, Bishop P. Adult vitreous structure and postnatal changes. Eye 2008;22:1214.

    PubMed  Google Scholar 

  16. Petrash JM. Aging and age-related diseases of the ocular lens and vitreous body. Investiga Ophthalmol Vis Sci. 2013;54:ORSF54–ORSF59.

    Google Scholar 

  17. Tan LE, Orilla W, Hughes PM, Tsai S, Burke JA, Wilson CG. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Investig Ophthalmol Vis Sci. 2011;52:1111–8.

    CAS  Google Scholar 

  18. Karhunen PJ, Brummer-Korvenkontio H, Leinikki P, Nyberg M. Stability of human immunodeficiency virus (HIV) antibodies in postmortem samples. J Forensic Sci. 1994;39:129–35.

    CAS  PubMed  Google Scholar 

  19. Majumder PD, Sudharshan S, Biswas J. Laboratory support in the diagnosis of uveitis. Indian J Ophthalmol. 2013;61:269.

    PubMed  PubMed Central  Google Scholar 

  20. Mahendradas P, Ranganna SK, Shetty R, Balu R, Narayana KM, Babu RB, et al. Ocular manifestations associated with chikungunya. Ophthalmology. 2008;115:287–91.

    PubMed  Google Scholar 

  21. Mahendradas P, Avadhani K, Shetty R. Chikungunya and the eye: a review. J Ophthalmic Inflamm Infect. 2013;3:35.

    PubMed  PubMed Central  Google Scholar 

  22. de Boer JH, Luyendijk L, Rothova A, Baarsma GS, de Jong PT, Bollemeijer J-G, et al. Detection of intraocular antibody production to herpesviruses in acute retinal necrosis syndrome. Am J Ophthalmol. 1994;117:201–10.

    PubMed  Google Scholar 

  23. Van Gelder RN, Willig JL, Holland GN, Kaplan HJ. Herpes simplex virus type 2 as a cause of acute retinal necrosis syndrome in young patients. Ophthalmology. 2001;108:869–76.

    PubMed  Google Scholar 

  24. Mathis A, Malecaze F, Bessieres M, Arne J, Seguela J, Bec P. Immunological analysis of the aqueous humour in candida endophthalmitis. II: Clinical study. Br J Ophthalmol. 1988;72:313–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Niu N, Zhang J, Sun Y, Wang S, Sun Y, Korteweg C, et al. Expression and distribution of immunoglobulin G and its receptors in an immune privileged site: the eye. Cell Mol Life Sci. 2011;68:2481–92.

    CAS  PubMed  Google Scholar 

  26. Nogueira M, Siqueira R, Freitas N, Amorim J, Bonjardim C, Ferreira P, et al. Detection of herpesvirus DNA by the polymerase chain reaction (PCR) in vitreous samples from patients with necrotising retinitis. J Clin Pathol. 2001;54:103–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Andrzejewski S, Murali A, Ramlogan-Steel C, Edwards KP, Efron N, Steel JC et al. Adeno-associated virus neutralising antibodies in type 1 diabetes mellitus. Gene Ther. 2019;26:250–63.

    CAS  PubMed  Google Scholar 

  28. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199:381–90.

    PubMed  Google Scholar 

  29. Lee S, Kang IK, Kim JH, Jung BK, Park K, Chang H, et al. Relationship Between Neutralizing Antibodies Against Adeno-Associated Virus in the Vitreous and Serum: Effects on Retinal Gene Therapy. Transl Vis Sci Technol. 2019;8:14–14.

    PubMed  PubMed Central  Google Scholar 

  30. Harbison CE, Weichert WS, Gurda BL, Chiorini JA, Agbandje-McKenna M, Parrish CR. Examining the cross-reactivity and neutralization mechanisms of a panel of mAbs against adeno-associated virus serotypes 1 and 5. J Gen Virol. 2012;93:347–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li C, Narkbunnam N, Samulski R, Asokan A, Hu G, Jacobson L, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 2012;19:288.

    CAS  PubMed  Google Scholar 

  32. Ramlogan‐Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno‐associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin Exp Ophthalmol. 2019;47:521–36.

    PubMed  Google Scholar 

  33. Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. Biodrugs. 2017;31:317–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther. 2012;20:73–83.

    CAS  PubMed  Google Scholar 

  35. Pei X, He T, Hall NE, Gerber D, Samulski RJ, Li C. AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology. 2018;518:95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. New Engl J Med. 2006;355:1432–44.

    CAS  PubMed  Google Scholar 

  37. Regillo CD, Brown DM, Abraham P, Yue H, Ianchulev T, Schneider S, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol. 2008;145:239–48. e5.

    CAS  PubMed  Google Scholar 

  38. Meyer CH, Krohne TU, Holz FG. Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina. 2011;31:1877–84.

    CAS  PubMed  Google Scholar 

  39. Mordenti J, Cuthbertson RA, Ferrara N, Thomsen K, Berleau L, Licko V, et al. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol. 1999;27:536–44.

    CAS  PubMed  Google Scholar 

  40. Heiduschka P, Fietz H, Hofmeister S, Schultheiss S, Mack AF, Peters S, et al. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Investig Ophthalmol Vis Sci. 2007;48:2814–23.

    Google Scholar 

  41. MacLachlan TK, Lukason M, Collins M, Munger R, Isenberger E, Rogers C, et al. Preclinical safety evaluation of AAV2-sFLT01—a gene therapy for age-related macular degeneration. Mol Ther. 2011;19:326–34.

    CAS  PubMed  Google Scholar 

  42. Halbert CL, Miller AD, Mcnamara S, Emerson J, Gibson RL, Ramsey B, et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: Implications for gene therapy using AAV vectors. Human Gene Ther. 2006;17:440–7.

    CAS  Google Scholar 

  43. Denard J, Rouillon J, Leger T, Garcia C, Lambert MP, Griffith G, et al. AAV-8 and AAV-9 vectors cooperate with serum proteins differently than AAV-1 and AAV-6. Mol Ther Methods Clin Dev. 2018;10:291–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Karlsson A, Christenson K, Matlak M, Björstad Å, Brown KL, Telemo E, et al. Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology. 2008;19:16–20.

    PubMed  Google Scholar 

  45. Díaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediat Inflamm. 2017;2017:9247574.

    Google Scholar 

  46. Denard J, Beley C, Kotin R, Lai-Kuen R, Blot S, Leh H, et al. Human galectin 3 binding protein interacts with recombinant adeno-associated virus type 6. J Virol. 2012;86:6620–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Obermann J, Priglinger CS, Merl-Pham J, Geerlof A, Priglinger S, Götz M, et al. Proteome-wide identification of glycosylation-dependent interactors of galectin-1 and galectin-3 on mesenchymal retinal pigment epithelial (RPE) cells. Mol Cell Proteom. 2017;16:1528–46.

    CAS  Google Scholar 

  48. Wang M, Sun J, Crosby A, Woodard K, Hirsch ML, Samulski RJ, et al. Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther. 2017;24:49.

    CAS  PubMed  Google Scholar 

  49. Zaiss AK, Cotter MJ, White LR, Clark SA, Wong NC, Holers VM, et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol. 2008;82:2727–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hüser D, Khalid D, Lutter T, Hammer E-M, Weger S, Heßler M, et al. High prevalence of infectious adeno-associated virus (AAV) in human peripheral blood mononuclear cells indicative of T lymphocytes as sites of AAV persistence. J Virol. 2017;91:e02137–16.

    PubMed  PubMed Central  Google Scholar 

  51. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704–12.

    CAS  PubMed  Google Scholar 

  52. Cunha-Vaz J, De Abreu JF, Campos A. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975;59:649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, et al. Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunol. 2016;5:e117.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the donors, the donors’ families and the team from Queensland Eye Bank for their generosity and involvement in donating, collecting and providing samples for research. We also thank Layton Vision Foundation for the technical support, lab space and equipment to perform and analyse presented experiments. Brett Stringer is supported by a Fellowship from the Layton Vision Foundation. Sławomir Andrzejewski was supported by a Scholarship  from the Gallipoli Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Layton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrzejewski, S., Moyle, P.M., Stringer, B.W. et al. Neutralisation of adeno-associated virus transduction by human vitreous humour. Gene Ther 28, 242–255 (2021). https://doi.org/10.1038/s41434-020-0162-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0162-8

This article is cited by

Search

Quick links