Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells

Abstract

Advancement of stem cell-based treatment will involve next-generation approaches to enhance therapeutic efficacy which is often modest, particularly in the context of myocardial regenerative therapy. Our group has previously demonstrated the beneficial effect of genetic modification of cardiac stem cells with Pim-1 kinase overexpression to rejuvenate aged cells as well as potentiate myocardial repair. Despite these encouraging findings, concerns were raised regarding potential for oncogenic risk associated with Pim-1 kinase overexpression. Testing of Pim-1 engineered c-kit+ cardiac interstitial cells (cCIC) derived from heart failure patient samples for indices of oncogenic risk was undertaken using multiple assessments including soft agar colony formation, micronucleation, gamma-Histone 2AX foci, and transcriptome profiling. Collectively, findings demonstrate comparable phenotypic and biological properties of cCIC following Pim-1 overexpression compared with using baseline control cells with no evidence for oncogenic phenotype. Using a highly selective and continuous sensor for quantitative assessment of PIM1 kinase activity revealed a sevenfold increase in Pim-1 engineered vs. control cells. Kinase activity profiling using a panel of sensors for other kinases demonstrates elevation of IKKs), AKT/SGK, CDK1-3, p38, and ERK1/2 in addition to Pim-1 consistent with heightened kinase activity correlating with Pim-1 overexpression that may contribute to Pim-1-mediated effects. Enhancement of cellular survival, proliferation, and other beneficial properties to augment stem cell-mediated repair without oncogenic risk is a feasible, logical, and safe approach to improve efficacy and overcome current limitations inherent to cellular adoptive transfer therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

RNA-Seq data generated in this study has been uploaded to the Gene Expression Omnibus (GEO) database (GSE124590).

References

  1. Chen C, Termglinchan V, Karakikes I. Concise review: mending a broken heart: the evolution of biological therapeutics. Stem Cells. 2017;35:1131–40.

    PubMed  PubMed Central  Google Scholar 

  2. Crowley MG, Tajiri N. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: new insights for clinical applications. Brain Circ. 2017;3:130–4.

    PubMed  PubMed Central  Google Scholar 

  3. Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res. 2017;12:39.

    PubMed  PubMed Central  Google Scholar 

  4. Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res. 2018;83:345–55.

    PubMed  Google Scholar 

  5. Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 2018;7:651–63.

    PubMed  PubMed Central  Google Scholar 

  6. Quesenberry P, Goldberg LR. A new stem cell biology: transplantation and baseline, cell cycle and exosomes. Adv Exp Med Biol. 2018;1056:3–9.

    CAS  PubMed  Google Scholar 

  7. Vinhas A, Rodrigues MT, Gomes ME. Exploring stem cells and inflammation in tendon repair and regeneration. Adv Exp Med Biol. 2018;1089:37–46.

    CAS  PubMed  Google Scholar 

  8. Witman N, Sahara M. Cardiac progenitor cells in basic biology and regenerative medicine. Stem Cells Int. 2018;2018:8283648.

    PubMed  PubMed Central  Google Scholar 

  9. Youssef AA, Ross EG, Bolli R, Pepine CJ, Leeper NJ, Yang PC. The promise and challenge of induced pluripotent stem cells for cardiovascular applications. JACC Basic Transl Sci. 2016;1:510–23.

    PubMed  PubMed Central  Google Scholar 

  10. Zhu Y, Chen X, Yang X, Ei-Hashash A. Stem cells in lung repair and regeneration: Current applications and future promise. J Cell Physiol. 2018;233:6414–24.

    CAS  PubMed  Google Scholar 

  11. Aagaard KS, Ganesalingam S, Jensen CH, Sheikh SP, Andersen DC. Poor engraftment potential of epicardial progenitors upon intramyocardial transplantation into the neonatal mouse heart. Int J Cardiol. 2013;168:4360–2.

    PubMed  Google Scholar 

  12. Der Sarkissian S, Levesque T, Noiseux N. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology. World J Stem Cells. 2017;9:9–25.

    Google Scholar 

  13. Hong KU, Guo Y, Li QH, Cao P, Al-Maqtari T, Vajravelu BN, et al. c-kit + Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE. 2014;9:e96725.

    PubMed  PubMed Central  Google Scholar 

  14. Kanda P, Davis DR. Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opin Biol Ther. 2017;17:1127–43.

    CAS  PubMed  Google Scholar 

  15. Li X, Tamama K, Xie X, Guan J. Improving cell engraftment in cardiac stem cell therapy. Stem Cells Int. 2016;2016:7168797.

    PubMed  Google Scholar 

  16. Serpooshan V, Wu SM. Patching up broken hearts: cardiac cell therapy gets a bioengineered boost. Cell Stem Cell. 2014;15:671–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM, Jun HW, et al. Overcoming the roadblocks to cardiac cell therapy using tissue engineering. J Am Coll Cardiol. 2017;70:766–75.

    PubMed  PubMed Central  Google Scholar 

  18. Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res. 2011;109:1415–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med. 2007;13:1467–75.

    CAS  PubMed  Google Scholar 

  20. Siddiqi S, Sussman MA. Cell and gene therapy for severe heart failure patients: the time and place for Pim-1 kinase. Expert Rev Cardiovasc Ther. 2013;11:949–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cottage CT, Bailey B, Fischer KM, Avitabile D, Collins B, Tuck S, et al. Cardiac progenitor cell cycling stimulated by pim-1 kinase. Circ Res. 2010;106:891–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulandavelu S, Karantalis V, Fritsch J, Hatzistergos KE, Loescher VY, McCall F, et al. Pim1 kinase overexpression enhances ckit(+) cardiac stem cell cardiac repair following myocardial infarction in swine. J Am Coll Cardiol. 2016;68:2454–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, et al. Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J Am Coll Cardiol. 2012;60:1278–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fischer KM, Cottage CT, Konstandin MH, Volkers M, Khan M, Sussman MA. Pim-1 kinase inhibits pathological injury by promoting cardioprotective signaling. J Mol Cell Cardiol. 2011;51:554–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, et al. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res. 2013;113:1169–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Broughton KM, Sussman MA. Enhancement strategies for cardiac regenerative cell therapy: focus on adult stem cells. Circ Res. 2018;123:177–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunen D, de Vries RC, Lieftink C, Beijersbergen RL, Bernards R. PIM kinases are a potential prognostic biomarker and therapeutic target in neuroblastoma. Mol Cancer Ther. 2018;17:849–57.

    CAS  PubMed  Google Scholar 

  28. Jimenez-Garcia MP, Lucena-Cacace A, Robles-Frias MJ, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Sci Rep. 2016;6:38079.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol. 2014;7:95.

    PubMed  PubMed Central  Google Scholar 

  30. Hinkel R. Pim1 overexpressing ckit(+) cardiac stem cells in cardiac regeneration: preconditioning as next-generation stem cell therapy? J Am Coll Cardiol. 2016;68:2465–6.

    PubMed  Google Scholar 

  31. Bokhoven M, Stephen SL, Knight S, Gevers EF, Robinson IC, Takeuchi Y, et al. Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol. 2009;83:283–94.

    CAS  PubMed  Google Scholar 

  32. Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C, Artus A, et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther. 2014;22:774–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther. 2009;17:1919–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol. 2006;24:687–96.

    CAS  PubMed  Google Scholar 

  35. Ranzani M, Cesana D, Bartholomae CC, Sanvito F, Pala M, Benedicenti F, et al. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer. Nat Methods. 2013;10:155–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, et al. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci. 2001;2:167–79.

    CAS  PubMed  Google Scholar 

  37. Domen J, Von Lindern M, Hermans A, Breuer M, Grosveld G, Berns A. Comparison of the human and mouse PIM-1 cDNAs: nucleotide sequence and immunological identification of the in vitro synthesized PIM-1 protein. Oncogene Res. 1987;1:103–12.

    CAS  PubMed  Google Scholar 

  38. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell. 1989;56:673–82.

    PubMed  Google Scholar 

  39. Baron BW, Anastasi J, Hyjek EM, Bies J, Reddy PL, Dong J, et al. PIM1 gene cooperates with human BCL6 gene to promote the development of lymphomas. Proc Natl Acad Sci USA. 2012;109:5735–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Moroy T, Grzeschiczek A, Petzold S, Hartmann KU. Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice. Proc Natl Acad Sci USA. 1993;90:10734–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y, Perez M, Munoz-Galvan S, Canamero M, et al. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One. 2013;8:e60277.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhattacharya N, Wang Z, Davitt C, McKenzie IF, Xing PX, Magnuson NS. Pim-1 associates with protein complexes necessary for mitosis. Chromosoma. 2002;111:80–95.

    CAS  PubMed  Google Scholar 

  43. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 2002;1593:45–55.

    CAS  PubMed  Google Scholar 

  44. Weirauch U, Beckmann N, Thomas M, Grunweller A, Huber K, Bracher F, et al. Functional role and therapeutic potential of the pim-1 kinase in colon carcinoma. Neoplasia. 2013;15:783–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene. 2008;27:4809–19.

    CAS  PubMed  Google Scholar 

  46. Lilly M, Kraft A. Enforced expression of the Mr 33,000 Pim-1 kinase enhances factor-independent survival and inhibits apoptosis in murine myeloid cells. Cancer Res. 1997;57:5348–55.

    CAS  PubMed  Google Scholar 

  47. Magnuson NS, Wang Z, Ding G, Reeves R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 2010;6:1461–78.

    CAS  PubMed  Google Scholar 

  48. Lilly M, Sandholm J, Cooper JJ, Koskinen PJ, Kraft A. The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene. 1999;18:4022–31.

    CAS  PubMed  Google Scholar 

  49. Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene. 2009;28:4261–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M, et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood. 2005;105:1759–67.

    CAS  PubMed  Google Scholar 

  51. White E. The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev. 2003;17:1813–6.

    CAS  PubMed  Google Scholar 

  52. Monsanto MM, White KS, Kim T, Wang BJ, Fisher K, Ilves K, et al. Concurrent isolation of 3 distinct cardiac stem cell populations from a single human heart biopsy. Circ Res. 2017;121:113–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lukovic E, Gonzalez-Vera JA, Imperiali B. Recognition-domain focused chemosensors: versatile and efficient reporters of protein kinase activity. J Am Chem Soc. 2008;130:12821–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lukovic E, Vogel Taylor E, Imperiali B. Monitoring protein kinases in cellular media with highly selective chimeric reporters. Angew Chem Int Ed Engl. 2009;48:6828–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Peterson LB, Yaffe MB, Imperiali B. Selective mitogen activated protein kinase activity sensors through the application of directionally programmable D domain motifs. Biochemistry. 2014;53:5771–8.

    CAS  PubMed  Google Scholar 

  57. Shults MD, Carrico-Moniz D, Imperiali B. Optimal Sox-based fluorescent chemosensor design for serine/threonine protein kinases. Anal Biochem. 2006;352:198–207.

    CAS  PubMed  Google Scholar 

  58. Shults MD, Imperiali B. Versatile fluorescence probes of protein kinase activity. J Am Chem Soc. 2003;125:14248–9.

    CAS  PubMed  Google Scholar 

  59. Shults MD, Janes KA, Lauffenburger DA, Imperiali B. A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat Methods. 2005;2:277–83.

    CAS  PubMed  Google Scholar 

  60. Stains CI, Tedford NC, Walkup TC, Lukovic E, Goguen BN, Griffith LG, et al. Interrogating signaling nodes involved in cellular transformations using kinase activity probes. Chem Biol. 2012;19:210–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, Winn RA. The soft agar colony formation assay. J Vis Exp. e51998 (2014). https://doi.org/10.3791/51998.

  62. Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N, et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 2009;15:1163–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, et al. HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen. 2001;37:31–45.

    CAS  PubMed  Google Scholar 

  64. Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2:1084–104.

    CAS  PubMed  Google Scholar 

  65. Fenech M, Holland N, Chang WP, Zeiger E, Bonassi S. The HUman MicroNucleus Project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res. 1999;428:271–83.

    CAS  PubMed  Google Scholar 

  66. Kirsch-Volders M, Decordier I, Elhajouji A, Plas G, Aardema MJ, Fenech M. In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis. 2011;26:177–84.

    CAS  PubMed  Google Scholar 

  67. Le Hegarat L, Dumont J, Josse R, Huet S, Lanceleur R, Mourot A, et al. Assessment of the genotoxic potential of indirect chemical mutagens in HepaRG cells by the comet and the cytokinesis-block micronucleus assays. Mutagenesis. 2010;25:555–60.

    PubMed  Google Scholar 

  68. Le Hegarat L, Mourot A, Huet S, Vasseur L, Camus S, Chesne C, et al. Performance of comet and micronucleus assays in metabolic competent HepaRG cells to predict in vivo genotoxicity. Toxicol Sci. 2014;138:300–9.

    PubMed  Google Scholar 

  69. Stains CI, Lukovic E, Imperiali B. A p38alpha-selective chemosensor for use in unfractionated cell lysates. ACS Chem Biol. 2011;6:101–5.

    CAS  PubMed  Google Scholar 

  70. Bachmann M, Moroy T. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 2005;37:726–30.

    CAS  PubMed  Google Scholar 

  71. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M, et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood. 2011;117:5332–9.

    CAS  PubMed  Google Scholar 

  72. Aguirre E, Renner O, Narlik-Grassow M, Blanco-Aparicio C. Genetic modeling of PIM proteins in cancer: proviral tagging and cooperation with oncogenes, tumor suppressor genes, and carcinogens. Front Oncol. 2014;4:109.

    PubMed  PubMed Central  Google Scholar 

  73. Holder SL, Abdulkadir SA. PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets. 2014;14:105–14.

    CAS  PubMed  Google Scholar 

  74. Hariharan N, Quijada P, Mohsin S, Joyo A, Samse K, Monsanto M, et al. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol. 2015;65:133–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood. 2005;105:4477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, et al. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res. 2011;89:650–60.

    CAS  PubMed  Google Scholar 

  77. Meraviglia V, Azzimato V, Piacentini L, Chiesa M, Kesharwani RK, Frati C, et al. Syngeneic cardiac and bone marrow stromal cells display tissue-specific microRNA signatures and microRNA subsets restricted to diverse differentiation processes. PLoS One. 2014;9:e107269.

    PubMed  PubMed Central  Google Scholar 

  78. Muller-Ehmsen J, Krausgrill B, Burst V, Schenk K, Neisen UC, Fries JW, et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 2006;41:876–84.

    PubMed  Google Scholar 

  79. Quijada P, Toko H, Fischer KM, Bailey B, Reilly P, Hunt KD, et al. Preservation of myocardial structure is enhanced by pim-1 engineering of bone marrow cells. Circ Res. 2012;111:77–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, et al. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation. 2009;120:2077–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Leath A, Cornetta K. Developing novel lentiviral vectors into clinical products. Methods Enzymol. 2012;507:89–108.

    CAS  PubMed  Google Scholar 

  82. Mautino MR. Lentiviral vectors for gene therapy of HIV-1 infection. Curr Gene Ther. 2002;2:23–43.

    CAS  PubMed  Google Scholar 

  83. Lundberg C, Bjorklund T, Carlsson T, Jakobsson J, Hantraye P, Deglon N, et al. Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther. 2008;8:461–73.

    CAS  PubMed  Google Scholar 

  84. Woods NB, Ooka A, Karlsson S. Development of gene therapy for hematopoietic stem cells using lentiviral vectors. Leukemia. 2002;16:563–9.

    CAS  PubMed  Google Scholar 

  85. Ahmed RP, Ashraf M, Buccini S, Shujia J, Haider H. Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regen Med. 2011;6:171–8.

    CAS  PubMed  Google Scholar 

  86. Cesselli D, Beltrami AP, D’Aurizio F, Marcon P, Bergamin N, Toffoletto B, et al. Effects of age and heart failure on human cardiac stem cell function. Am J Pathol. 2011;179:349–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Capogrossi MC. Cardiac stem cells fail with aging: a new mechanism for the age-dependent decline in cardiac function. Circ Res. 2004;94:411–3.

    CAS  PubMed  Google Scholar 

  88. Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res. 2008;102:1319–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, Shin Teoh T, Prata L, Cottle BJ, Clark JE, Punjabi PP, Awad W, Torella D, Tchkonia T, Kirkland JL, Ellison-Hughes GM. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. e12931 (2019). https://doi.org/10.1111/acel.12931

    PubMed  PubMed Central  Google Scholar 

  90. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10:274–83.

    CAS  PubMed  Google Scholar 

  91. Booth SA, Charchar FJ. Cardiac telomere length in heart development, function, and disease. Physiol Genomics. 2017;49:368–84.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research in this study was funded by STTR R41HL1377602 to CardioCreate Inc. We thank the staff at Sharp Hospital, in particular Chris Kohlmeyer and Donna Small, for bridging the collaborative arrangement between Sharp Hospital and the Sussman Laboratory. KMB is supported by NIH grant F32HL136196. MAS is also supported by NIH grants: R01HL067245, R37HL091102, R01HL105759, R01HL113647, R01HL117163, P01HL085577, and R01HL122525, as well as an award from the Fondation Leducq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Sussman.

Ethics declarations

Conflict of interest

This study was supported in part through funds awarded to CardioCreate Inc. Authors affiliated with CardioCreate Inc. include MAS (Chief Scientific Officer and co-founder) and KMB (Administrative Official) who both have significant financial interests in the company.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broughton, K., Korski, K., Echeagaray, O. et al. Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells. Gene Ther 26, 324–337 (2019). https://doi.org/10.1038/s41434-019-0084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0084-5

This article is cited by

Search

Quick links