Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular landscape of oculocutaneous albinism in India and its therapeutic implications

Abstract

Oculocutaneous albinism is an inherited disorder of melanin biosynthesis, characterized by absent or reduced pigmentation of the skin, hair, and eyes. Molecular alterations of genes that cause non-syndromic albinism in Asian Indians are poorly characterized. This information would be useful for developing therapies for this disorder. We analyzed 164 persons with non-syndromic albinism, belonging to unrelated families from all parts of India, for molecular changes in the causative genes. Subjects with white hair, white skin, and red iris had their tyrosinase gene sequenced and were also tested by MLPA for deletions/duplications. Subjects with negative results or with darker skin, golden/brown or darker hair had sequencing of TYR, P, TYRP1, SLC45A2 and GPR143 genes. Pathogenic variants in TYR (OCA1) were observed in 139 (84.7%) patients, in the P gene (OCA2) in 20 (12.2%), in TYRP1 (OCA3) in two (1.2%), in SLC45A2 (OCA 4) in one (0.61%), and in GPR143 (X-linked ocular albinism) in two (1.2%) patients. Of 278 alleles with variants in TYR, 179 (64.3%) alleles had (p.R278*) alteration, suggesting the possibility of therapy with a stop codon readthrough molecule. We report 20 patients with 13 disease associated variants in the P gene and 18 novel pathogenic variants in TYR, P, TYRP1, SLC45A2 and GPR143 genes. The data are compared with those reported from India, Pakistan and rest of the world. The therapeutic options in albinism are briefly described, opening this field for future therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

Data may be requested from the authors and will be made available subject to patient consent. The variants are submitted to LOVD V3.0 as individual # 00435430, 00435573, 00435574, 00435575, 00436615, 00436616, 00436617, 00436618, 00436619, 00436620, 00436621, 00436622, 00436624, 00436625,00436626,00436627,00436636,00436637,00436638,00436639,00436640,00436641,00436642,00436643,00466644,00436645,00436666,00436667,00436668,00436669,00436670,00436671,00436675,00436676,00436777,00436778,00436784,00436785,00436786,00436787,00436788.

References

  1. OMIM®Online Mendelian Inheritance in Man. Johns Hopkins University, Baltimore, MD; 1985. Albinism, Oculocutaneous, Type IA; OCA1A. # 203100; 6/2/1986 [Updated 01/27/2021]. Available from: https://www.omim.org/entry/203100.

  2. Summers CG, Albinism. In: Lambert SR, Lyons CJ, editors. Taylor and Hoyt’s pediatric ophthalmology and strabismus. 6th ed. USA: Elsevier Inc; 2022. 403–10.

  3. Kromberg JGR, Kerr R. Oculocutaneous albinism in southern Africa: historical background, genetic, clinical and psychosocial issues. Afr J Disabil. 2022;11:877.

    Article  PubMed  PubMed Central  Google Scholar 

  4. The Lancet Child Adolescent Health. Albinism: myths and reality. Lancet Child Adolesc Health. 2019;3:511.

    Article  CAS  PubMed  Google Scholar 

  5. Jeevan Trust. Raising awareness about albinism in India. India, 2016. Available from https://www.thebetterindia.com/50960/jeevan-trust-albinism-awareness/.

  6. Gupta A. Albinism India Group. Available from: https://www.facebook.com/groups/139027856116032.

  7. Verma IC, Anand NK, Modi UJ, Bharucha BA. Study of malformations and Down syndrome in India–a multi-centric study. Mumbai: Department of Atomic Energy, and Trombay, Bhabha Atomic Research Center; 1998).

  8. Master-Notani P, Kolah PJ, Sanghvi LD. Congenital malformations in the new born in Bombay II. Acta Genet Stat Med. 1968;18:193–205.

    CAS  PubMed  Google Scholar 

  9. Chaki M, Mukhopadhyay A, Chatterjee S, Das M, Samanta S, Ray K. Higher prevalence of OCA1 in an ethnic group of eastern India is due to a founder mutation in the tyrosinase gene. Mol Vis. 2005;11:531–4.

    CAS  PubMed  Google Scholar 

  10. Chaki M, Sengupta M, Mukhopadhyay A, Subba Rao I, Majumder PP, Das M, et al. OCA1 in different ethnic groups of India is primarily due to founder mutations in the tyrosinase gene. Ann Hum Genet. 2006;70:623–30.

    Article  CAS  PubMed  Google Scholar 

  11. Ullah MI. Clinical and mutation spectrum of autosomal recessive non-syndromic oculocutaneous albinism (nsOCA) in Pakistan: a review. Genes. 2022;13:1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma EZ, Zhou AE, Hoegler KM, Khachemoune A. Oculocutaneous albinism: epidemiology, genetics, skin manifestation, and psychosocial issues. Arch Dermatol Res. 2023;315:107–16.

    Article  PubMed  Google Scholar 

  13. Tripathi RK, Bundey S, Musarella MA, Droetto S, Strunk KM, Holmes SA, et al. Mutations of the tyrosinase gene in Indo-Pakistani patients with type I (tyrosinase-deficient) oculocutaneous albinism (OCA). Am J Hum Genet. 1993;53:1173–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sundaresan P, Sil AK, Philp AR, Randolph MA, Natchiar G, Namperumalsamy P. Genetic analysis of oculocutaneous albinism type 1 (OCA1) in Indian families: two novel frameshift mutations in the TYR Gene. Mol Vis. 2004;10:1005–10.

    CAS  PubMed  Google Scholar 

  15. Miyamura Y, Verma IC, Saxena R, Hoshi M, Murase A, Nakamura E, et al. Five novel mutations in tyrosinase gene of Japanese and Indian patients with oculocutaneous albinism type I (OCA1). J Invest Dermatol. 2005;125:397–8.

    Article  CAS  PubMed  Google Scholar 

  16. Sengupta M, Mondal M, Jaiswal P, Sinha S, Chaki M, Samanta S, et al. Comprehensive analysis of the molecular basis of oculocutaneous albinism in Indian patients lacking a mutation in the tyrosinase gene. Br J Dermatol. 2010;163:487–94.

    Article  CAS  PubMed  Google Scholar 

  17. Chiang PW, Spector E, Scheuerle A. A case of Asian Indian OCA3 patient. Am J Med Genet A. 2009;149A:1578–80.

    Article  CAS  PubMed  Google Scholar 

  18. Sengupta M, Chaki M, Arti N, Ray K. SLC45A2 variations in Indian oculocutaneous albinism patients. Mol Vis. 2007;13:1406–11.

    CAS  PubMed  Google Scholar 

  19. Mondal M, Sengupta M, Samanta S, Sil A, Ray K. Molecular basis of albinism in India: evaluation of seven potential candidate genes and some new findings. Gene. 2012;511:470–4.

    Article  CAS  PubMed  Google Scholar 

  20. Dhangar S, Panchal P, Ghatanatti J, Suralkar J, Shah A, Vundinti BR. Novel deletion of exon 3 in TYR gene causing Oculocutaneous albinism 1B in an Indian family along with intellectual disability associated with chromosomal copy number variations [published correction appears in BMC Med Genomics. 2022 Jan 18;15(1):11]. BMC Med Genom. 2022;15:2.

    Article  CAS  Google Scholar 

  21. Lewis SS, Girisha KM. Whole exome sequencing identifies a novel pathogenic variation [p.(Gly194valfs*7)] in SLC45A2 in the homozygous state in multiple members of a family with oculocutaneous albinism in southern India. Clin Exp Dermatol. 2020;45:409–13.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X. Gene mutation-based and specific therapies in precision medicine. J Cell Mol Med. 2016;20:577–80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mittal S, Tang I, Gleeson JG. Evaluating human mutation databases for “treatability” using patient-customized therapy. Med. 2022;3:740–59.

    Article  CAS  PubMed  Google Scholar 

  24. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durham-Pierre D, Gardner JM, Nakatsu Y, King RA, Francke U, Ching A, et al. African origin of an intragenic deletion of the human P gene in tyrosinase positive oculocutaneous albinism. Nat Genet. 1994;7:176–9.

    Article  CAS  PubMed  Google Scholar 

  26. Renugadevi K, Sil AK, Perumalsamy V, Sundaresan P. Spectrum of candidate gene mutations associated with Indian familial oculocutaneous and ocular albinism. Mol Vis. 2010;16:1514–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Manga P, Kromberg JG, Box NF, Sturm RA, Jenkins T, Ramsay M. Rufous oculocutaneous albinism in southern African Blacks is caused by mutations in the TYRP1 gene. Am J Hum Genet. 1997;61:1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miyamura Y, Verma IC, Saxena R, Murase A, Kono M, Suzuki T, et al. Establishment of tyrosinase sequence database in normally pigmented Indians and Japanese for rapid determination of novel mutations. J Dermatol Sci. 2005;39:167–73.

    Article  CAS  PubMed  Google Scholar 

  30. Rauniyar D, Das AV. Consanguinity and ocular disorders in India: electronic medical records driven big data analytics. Indian J Ophthalmol. 2022;70:2401–07.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chaki M, Sengupta M, Mondal M, Bhattacharya A, Mallick S, Bhadra R, et al. Molecular and functional studies of tyrosinase variants among Indian oculocutaneous albinism type 1 patients. J Invest Dermatol. 2011;131:260–2.

    Article  CAS  PubMed  Google Scholar 

  32. University of Calcutta, Department of Biotechnology, JIS Institute of Advanced Studies and Research. The Indian Genetic Disease Database v2. Available from: https://bioinfo.jisiasr.org/igdd2/index.html.

  33. Ganguly K, Dutta T, Saha A, Sarkar D, Sil A, Ray K, et al. Mapping the TYR gene reveals novel and previously reported variants in Eastern Indian patients highlighting preponderance of the same changes in multiple unrelated ethnicities. Ann Hum Genet. 2020;84:303–12.

    Article  CAS  PubMed  Google Scholar 

  34. Wei A, Zhang T, Yuan Y, Qi Z, Bai D, Zhang Y, et al. Spectrum analysis of albinism genes in a large cohort of Chinese Index Patients. J Invest Dermatol. 2022;142:1752–5.e3.

    Article  CAS  PubMed  Google Scholar 

  35. Lasseaux E, Plaisant C, Michaud V, Pennamen P, Trimouille A, Gaston L, et al. Molecular characterization of a series of 990 index patients with albinism. Pigment Cell Melanoma Res. 2018;31:466–74.

    Article  CAS  PubMed  Google Scholar 

  36. Okamura K, Suzuki T. Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell Melanoma Res. 2021;34:190–203.

    Article  CAS  PubMed  Google Scholar 

  37. Hutton SM, Spritz RA. Comprehensive analysis of oculocutaneous albinism among non-Hispanic caucasians shows that OCA1 is the most prevalent OCA type. J Invest Dermatol. 2008;128:2442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dumitrescu AV, Tran J, Pfeifer W, Bhattarai SV, Kemerley A, Dunn TV, et al. Clinical albinism score, presence of nystagmus and optic nerves defects are correlated with visual outcome in patients with oculocutaneous albinism. Ophthalmic Genet. 2021;42:539–52.

    Article  CAS  PubMed  Google Scholar 

  39. Kromberg JG, Bothwell J, Kidson SH, Manga P, Kerr R, Jenkins T. Types of albinism in the black southern africa population. East Afr Med J. 2012;89:20–7.

    CAS  PubMed  Google Scholar 

  40. Kessel L, Kjer B, Lei U, Duno M, Grønskov K. Genotype-phenotype associations in Danish patients with ocular and oculocutaneous albinism. Ophthalmic Genet. 2021;42:230–8.

    Article  CAS  PubMed  Google Scholar 

  41. Liu S, Kuht HJ, Moon EH, Maconachie GDE, Thomas MG. Current and emerging treatments for albinism. SurvOphthalmol. 2021;66:362–77.

    Google Scholar 

  42. Summers CG, Connett JE, Holleschau AM, Anderson JL, De Becker I, McKay BS, et al. Does levodopa improve vision in albinism? Results of a randomized, controlled clinical trial. Clin Exp Ophthalmol. 2014;42:713–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rosemblat S, Durham-Pierre D, Gardner JM, Nakatsu Y, Brilliant MH, Orlow SJ. Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene. Proc Natl Acad Sci USA. 1994;91:12071–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onojafe IF, Adams DR, Simeonov DR, Zhang J, Chan CC, Bernardini IM, et al. Nitisinone improves eye and skin pigmentation defects in a mouse model of oculocutaneous albinism. J Clin Invest. 2011;121:3914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adams DR, Menezes S, Jauregui R, Valivullah ZM, Power B, Abraham M, et al. One-year pilot study on the effects of nitisinone on melanin in patients with OCA-1B. JCI Insight. 2019;4:e124387.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teramae A, Kobayashi Y, Kunimoto H, Nakajima K, Suzuki T, Tsuruta D, et al. The molecular basis of chemical chaperone therapy for oculocutaneous albinism type 1A. J Invest Dermatol. 2019;139:1143–9.

    Article  CAS  PubMed  Google Scholar 

  47. Torriano S, Baulier E, Garcia Diaz A, Corneo B, Farber DB. CRISPR-AsCas12a efficiently corrects a GPR143 intronic mutation in induced pluripotent stem cells from an ocular albinism patient. CRISPR J. 2022;5:457–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gargiulo A, Bonetti C, Montefusco S, Neglia S, Di Vicino U, Marrocco E, et al. AAV-mediated tyrosinase gene transfer restores melanogenesis and retinal function in a model of oculo-cutaneous albinism type I (OCA1). Mol Ther. 2009;17:1347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sincere thanks to the children, families and clinicians who took part in this project. Thanks to Molecular Genetics Staff for technical help. Thanks also to Medgenome for NGS sequencing of some of the samples.

Funding

This work was supported by Sir Ganga Ram Hospital. No external funding was used.

Author information

Authors and Affiliations

Authors

Contributions

SK: Data generation and analysis of Sanger and Next generation sequencing of panel of OCA genes, analyzed and interpreted data, writing and revising manuscript. RS: Data generation and analysis of Sanger and Next generation sequencing of panel of OCA genes, analyzed data, revised manuscript. RP: Enrolling patients, Gathering data, collating the mutations, Writing and revising manuscript. SB: Enrolling patients, Gathering data, Writing and revising manuscript. SP: Whole exome data collection, checking and formatting references, revising manuscript. SD: Analysis of Next generation sequencing of panel of OCA genes, revising manuscript. VA: Enrolling patients, collating mutations, revising manuscript. IV: Enrolling patients, analyzed and interpreted data, planned and executed project, wrote and critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sudha Kohli or Ishwar Verma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Ethics approval was obtained from the Institutional Ethics Review Board of Sir Ganga Ram Hospital vis ethical clearance letter no, EC/07/23/2311.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, S., Saxena, R., Puri, R.D. et al. The molecular landscape of oculocutaneous albinism in India and its therapeutic implications. Eur J Hum Genet (2023). https://doi.org/10.1038/s41431-023-01496-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-023-01496-5

Search

Quick links