Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Phenylketonuria

Abstract

Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenylalanine metabolism and PKU.
Fig. 2: The prevalence of PAH deficiency and different PAH deficiency phenotypes worldwide.
Fig. 3: Timeline of milestones in the understanding and treatment of PKU.
Fig. 4: Pathological manifestations in PKU.
Fig. 5: Proposed algorithm for screening and diagnosis of PKU and monitoring treatment efficacy.

Similar content being viewed by others

References

  1. Anikster, Y. et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am. J. Hum. Genet. 100, 257–266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blau, N. Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert. Opin. Drug. Metab. Toxicol. 9, 1207–1218 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Dhondt, J.-L. Lessons from 30 years of selective screening for tetrahydrobiopterin deficiency. J. Inherit. Metab. Dis. 33, S219–S223 (2010).

    Article  PubMed  CAS  Google Scholar 

  4. Straniero, L. et al. DNAJC12 and dopa-responsive nonprogressive parkinsonism. Ann. Neurol. 82, 640–646 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Blau, N., van Spronsen, F. J. & Levy, H. L. Phenylketonuria. Lancet 376, 1417–1427 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. van Spronsen, F. J. et al. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J. Inherit. Metab. Dis. 32, 27–31 (2009).

    Article  PubMed  CAS  Google Scholar 

  7. Güttler, F. & Hansen, G. Different phenotypes for phenylalanine hydroxylase deficiency. Ann. Clin. Biochem. 14, 124–134 (1977).

    Article  PubMed  Google Scholar 

  8. van Spronsen, F. J. et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 5, 743–756 (2017).

    Article  PubMed  Google Scholar 

  9. Følling, I. A. Über Ausscheidung von Phenylbrenztraubensäure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillität. Hoppe-Seyler’s Z. für Physiologische Chem. 227, 169–181 (1934).

    Article  Google Scholar 

  10. Penrose, L. S. Inheritance of phenylpyruvic amentia (phenylketonuria). Lancet 226, 192–194 (1935).

    Article  Google Scholar 

  11. Cowie, V. A. An atypical case of phenylketonuria. Lancet 1, 272 (1951).

    Article  CAS  PubMed  Google Scholar 

  12. Jervis, G. A. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proc. Soc. Exp. Biol. Med. 82, 514–515 (1953).

    CAS  PubMed  Google Scholar 

  13. Jervis, G. A. Studies on phenylpyruvic oligophrenia; the position of the metabolic error. J. Biol. Chem. 169, 651–656 (1947).

    Article  CAS  PubMed  Google Scholar 

  14. Bickel, H., Gerrard, J. & Hickmans, E. M. Influence of phenylalanine intake on phenylketonuria. Lancet 265, 812–813 (1953).

    Article  CAS  PubMed  Google Scholar 

  15. Wortis, J. & Giancotti, A. M. A new simple test paper for mass detection of phenylketonuria. Am. J. Public Health Nations Health 49, 463–464 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dent, C. Discussion of Armstrong MD: Relation of biochemical abnormality to development of mental defect in phenylketonuria in etiological factors in mental retardation. In Report of 23rd Ross Conference, Columbus, Ohio (1957).

  17. Guthrie, R. & Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).

    Article  CAS  PubMed  Google Scholar 

  18. Kaufman, S. The phenylalanine hydroxylating system from mammalian liver. Adv. Enzymol. Relat. Areas Mol. Biol. 35, 245–319 (1971).

    CAS  PubMed  Google Scholar 

  19. Bartholome, K. Letter: A new molecular defect in phenylketonuria. Lancet 2, 1580 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Hoskins, J. A. et al. Enzymatic control of phenylalanine intake in phenylketonuria. Lancet 1, 392–394 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Woo, S. L., Lidsky, A. S., Güttler, F., Chandra, T. & Robson, K. J. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306, 151–155 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Konecki, D. S., Wang, Y., Trefz, F. K., Lichter-Konecki, U. & Woo, S. L. Structural characterization of the 5′ regions of the human phenylalanine hydroxylase gene. Biochemistry 31, 8363–8368 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Standing, S. J. & Taylor, R. P. Phenylalanine: application of a simple HPLC technique to its measurement in dried blood spots. Ann. Clin. Biochem. 29, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Kure, S. et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J. Pediatr. 135, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Longo, N. et al. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet 384, 37–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walter, J. H. et al. How practical are recommendations for dietary control in phenylketonuria? Lancet 360, 55–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Scriver, C. R. The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat. 28, 831–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hillert, A. et al. The genetic landscape and epidemiology of phenylketonuria. Am. J. Hum. Genet. 107, 234–250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Desviat, L. R. et al. Genetic and phenotypic aspects of phenylalanine hydroxylase deficiency in Spain: molecular survey by regions. Eur. J. Hum. Genet. 7, 386–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Ozalp, I., Coskun, T., Tokol, S., Demircin, G. & Mönch, E. Inherited metabolic disorders in Turkey. J. Inherit. Metab. Dis. 13, 732–738 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Senemar, S., Ganjekarimi, A., Senemar, S., Tarami, B. & Bazrgar, M. The prevalence and clinical study of galactosemia disease in a pilot screening program of neonates, southern Iran. Iran. J. Public. Health 40, 99–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gundorova, P. et al. Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus. PLoS ONE 13, e0201489 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sutivijit, Y., Banpavichit, A. & Wiwanitkit, V. Prevalence of neonatal hypothyroidism and phenylketonuria in Southern Thailand: a 10-year report. Indian. J. Endocrinol. Metab. 15, 115–117 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Okano, Y., Kudo, S., Nishi, Y., Sakaguchi, T. & Aso, K. Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan. J. Hum. Genet. 56, 306–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Borrajo, G. J. C. Newborn screening in Latin America at the beginning of the 21st century. J. Inherit. Metab. Dis. 30, 466–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Hitzeroth, H. W., Niehaus, C. E. & Brill, D. C. Phenylketonuria in South Africa. A report on the status quo. S Afr. Med. J. 85, 33–36 (1995).

    CAS  PubMed  Google Scholar 

  37. Hardelid, P. et al. The birth prevalence of PKU in populations of European, South Asian and sub-Saharan African ancestry living in South East England. Ann. Hum. Genet. 72, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  38. Opladen, T., Hoffmann, G. F., Kühn, A. A. & Blau, N. Pitfalls in phenylalanine loading test in the diagnosis of dopa-responsive dystonia. Mol. Genet. Metab. 108, 195–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. van Spronsen, F. J. et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability. J. Med. Genet 55, 249–253 (2018).

    Article  CAS  Google Scholar 

  40. Garbade, S. F. et al. Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria. Genet. Med. 21, 580–590 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Eisensmith, R. C. et al. Multiple origins for phenylketonuria in Europe. Am. J. Hum. Genet. 51, 1355–1365 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Waters, P. J., Parniak, M. A., Nowacki, P. & Scriver, C. R. In vitro expression analysis of mutations in phenylalanine hydroxylase: linking genotype to phenotype and structure to function. Hum. Mutat. 11, 4–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Shen, N. et al. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype–phenotype correlation. Mol. Genet. Metab. 117, 328–335 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Himmelreich, N. et al. Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria. Mol. Genet. Metab. 125, 86–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Blau, N. & Erlandsen, H. The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol. Genet. Metab. 82, 101–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Shedlovsky, A., McDonald, J. D., Symula, D. & Dove, W. F. Mouse models of human phenylketonuria. Genetics 134, 1205–1210 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gersting, S. W. et al. Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo. Hum. Mol. Genet. 19, 2039–2049 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Levy, H. L. et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet 370, 504–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. McDonald, J. D., Bode, V. C., Dove, W. F. & Shedlovsky, A. Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc. Natl Acad. Sci. USA 87, 1965–1967 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saugstad, L. F. Birthweights in children with phenylketonuria and in their siblings. Lancet 1, 809–813 (1972).

    Article  CAS  PubMed  Google Scholar 

  51. Verkerk, P. H., van Spronsen, F. J., Smit, G. P. & Sengers, R. C. Impaired prenatal and postnatal growth in Dutch patients with phenylketonuria. The National PKU Steering Committee. Arch. Dis. Child. 71, 114–118 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ilgaz, F. et al. Long-term growth in phenylketonuria: a systematic review and meta-analysis. Nutrients 11, 2070 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  53. Ayling, J. E., Helfand, G. D. & Pirson, W. D. Phenylalanine hydroxylase from human kidney. Enzyme 20, 6–19 (1975).

    Article  CAS  PubMed  Google Scholar 

  54. Huttenlocher, P. R. The neuropathology of phenylketonuria: human and animal studies. Eur. J. Pediatr. 159 (Suppl 2), 102–106 (2000).

    Article  Google Scholar 

  55. Bauman, M. L. & Kemper, T. L. Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol. 58, 55–63 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Horling, K. et al. Hippocampal synaptic connectivity in phenylketonuria. Hum. Mol. Genet. 24, 1007–1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Surtees, R. & Blau, N. The neurochemistry of phenylketonuria. Eur. J. Pediatr. 159 (Suppl 2), 109–113 (2000).

    Article  Google Scholar 

  58. Jervis, G. A. Studies on phenylpyruvic oligophrenia; phenylpyruvic acid content on blood. Proc. Soc. Exp. Biol. Med. 81, 715–720 (1952).

    Article  CAS  PubMed  Google Scholar 

  59. Batshaw, M. L., Valle, D. & Bessman, S. P. Unsuccessful treatment of phenylketonuria with tyrosine. J. Pediatr. 99, 159–160 (1981).

    Article  CAS  PubMed  Google Scholar 

  60. Azen, C. G. et al. Intellectual development in 12-year-old children treated for phenylketonuria. Am. J. Dis. Child. 145, 35–39 (1991).

    CAS  PubMed  Google Scholar 

  61. van Vliet, D. et al. Can untreated PKU patients escape from intellectual disability? A systematic review. Orphanet J. Rare Dis. 13, 149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hörster, F. et al. Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr. Res. 59, 544–548 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. Hartwig, C. et al. Elevated phenylalanine levels interfere with neurite outgrowth stimulated by the neuronal cell adhesion molecule L1 in vitro. FEBS Lett. 580, 3489–3492 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Andolina, D. et al. 5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria. Int. J. Neuropsychopharmacol. 14, 479–489 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Schlegel, G., Scholz, R., Ullrich, K., Santer, R. & Rune, G. M. Phenylketonuria: direct and indirect effects of phenylalanine. Exp. Neurol. 281, 28–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Christ, S. E. et al. Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria. Mol. Genet. Metab. 118, 3–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Pilotto, A. et al. Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. J. Inherit. Metab. Dis. 42, 398–406 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Dyer, C. A. et al. Evidence for central nervous system glial cell plasticity in phenylketonuria. J. Neuropathol. Exp. Neurol. 55, 795–814 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Schoemans, R. et al. Oligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites. J. Inherit. Metab. Dis. 33, 113–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shefer, S. et al. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J. Neurosci. Res. 61, 549–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Qin, M. & Smith, C. B. Regionally selective decreases in cerebral glucose metabolism in a mouse model of phenylketonuria. J. Inherit. Metab. Dis. 30, 318–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Winn, S. R., Scherer, T., Thöny, B. & Harding, C. O. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU). Mol. Genet. Metab. 117, 5–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Cabib, S., Pascucci, T., Ventura, R., Romano, V. & Puglisi-Allegra, S. The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behav. Genet. 33, 301–310 (2003).

    Article  PubMed  Google Scholar 

  74. Zagreda, L., Goodman, J., Druin, D. P., McDonald, D. & Diamond, A. Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J. Neurosci. 19, 6175–6182 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hasselbalch, S. et al. Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr. Res. 40, 21–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Ficicioglu, C. et al. A pilot study of fluorodeoxyglucose positron emission tomography findings in patients with phenylketonuria before and during sapropterin supplementation. J. Clin. Neurol. 9, 151–156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wasserstein, M. P., Snyderman, S. E., Sansaricq, C. & Buchsbaum, M. S. Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol. Genet. Metab. 87, 272–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Miller, A. L., Hawkins, R. A. & Veech, R. L. Phenylketonuria: phenylalanine inhibits brain pyruvate kinase in vivo. Science 179, 904–906 (1973).

    Article  CAS  PubMed  Google Scholar 

  79. Choi, T. B. & Pardridge, W. M. Phenylalanine transport at the human blood–brain barrier. Studies with isolated human brain capillaries. J. Biol. Chem. 261, 6536–6541 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Kanai, Y. et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 273, 23629–23632 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. de Groot, M. J., Hoeksma, M., Blau, N., Reijngoud, D. J. & van Spronsen, F. J. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol. Genet. Metab. 99 (Suppl 1), 86–89 (2010).

    Article  CAS  Google Scholar 

  82. Hoeksma, M. et al. Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol. Genet. Metab. 96, 177–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. de Groot, M. J. et al. Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J. Rare Dis. 8, 133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. van Vliet, D. et al. Large neutral amino acid supplementation exerts its effect through three synergistic mechanisms: proof of principle in phenylketonuria mice. PLoS One 10, e0143833 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Pietz, J. et al. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J. Clin. Invest. 103, 1169–1178 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koch, R., Moseley, K. D., Yano, S., Nelson, M. & Moats, R. A. Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment. Mol. Genet. Metab. 79, 110–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Schindeler, S. et al. The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol. Genet. Metab. 91, 48–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. van Vliet, D. et al. Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. Am. J. Clin. Nutr. 104, 1292–1300 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. O’Kane, R. L. & Hawkins, R. A. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood–brain barrier. Am. J. Physiol. Endocrinol. Metab. 285, E1167–E1173 (2003).

    Article  PubMed  Google Scholar 

  90. Hawkins, R. A., O’Kane, R. L., Simpson, I. A. & Viña, J. R. Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr. 136, 218S–226SS (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Wegrzyn, A. In silico patient: systems medicine approach to inborn errors of metabolism. Thesis, Univ. Groningen (2020).

  92. Pare, C. M., Sandler, M. & Stacey, R. S. 5-Hydroxytryptamine deficiency in phenylketonuria. Lancet 272, 551–553 (1957).

    Article  CAS  PubMed  Google Scholar 

  93. McKean, C. M. The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res. 47, 469–476 (1972).

    Article  CAS  PubMed  Google Scholar 

  94. Harding, C. O. et al. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU). J. Inherit. Metab. Dis. 37, 735–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Puglisi-Allegra, S. et al. Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11, 1361–1364 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Pascucci, T., Ventura, R., Puglisi-Allegra, S. & Cabib, S. Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13, 2561–2564 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Pascucci, T. et al. 5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int. J. Neuropsychopharmacol. 12, 1067–1079 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Pascucci, T. et al. In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria. J. Inherit. Metab. Dis. 35, 1001–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Vliet, D. et al. Large neutral amino acid supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria: evidence from adult Pah-enu2 mice. J. Nutr. Biochem. 53, 20–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Christ, S. E., Huijbregts, S. C. J., de Sonneville, L. M. J. & White, D. A. Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Mol. Genet. Metab. 99 (Suppl 1), 22–32 (2010).

    Article  CAS  Google Scholar 

  101. Adler-Abramovich, L. et al. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat. Chem. Biol. 8, 701–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Dobrowolski, S. F. et al. Altered DNA methylation in PAH deficient phenylketonuria. Mol. Genet. Metab. 115, 72–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Dobrowolski, S. F. et al. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria. Mol. Genet. Metab. 119, 1–7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ercal, N., Aykin-Burns, N., Gurer-Orhan, H. & McDonald, J. D. Oxidative stress in a phenylketonuria animal model. Free Radic. Biol. Med. 32, 906–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. van der Goot, E. et al. Hippocampal microglia modifications in C57Bl/6 Pahenu2 and BTBR Pahenu2 phenylketonuria (PKU) mice depend on the genetic background, irrespective of disturbed sleep patterns. Neurobiol. Learn. Mem. 160, 139–143 (2019).

    Article  PubMed  CAS  Google Scholar 

  106. Thompson, A. J. et al. Neurological deterioration in young adults with phenylketonuria. Lancet 336, 602–605 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Rubin, S. et al. Sight-threatening phenylketonuric encephalopathy in a young adult, reversed by diet. JIMD Rep. 10, 83–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jaulent, P. et al. Neurological manifestations in adults with phenylketonuria: new cases and review of the literature. J. Neurol. 267, 531–542 (2020).

    Article  PubMed  Google Scholar 

  109. Rosini, F., Rufa, A., Monti, L., Tirelli, L. & Federico, A. Adult-onset phenylketonuria revealed by acute reversible dementia, prosopagnosia and parkinsonism. J. Neurol. 261, 2446–2448 (2014).

    Article  PubMed  Google Scholar 

  110. Arnold, G. L., Vladutiu, C. J., Orlowski, C. C., Blakely, E. M. & DeLuca, J. Prevalence of stimulant use for attentional dysfunction in children with phenylketonuria. J. Inherit. Metab. Dis. 27, 137–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Bilder, D. A. et al. Systematic review and meta-analysis of neuropsychiatric symptoms and executive functioning in adults with phenylketonuria. Dev. Neuropsychol. 41, 245–260 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jahja, R. et al. Long-term follow-up of cognition and mental health in adult phenylketonuria: a PKU-COBESO study. Behav. Genet. 47, 486–497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. van Wegberg, A. M. J. et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J. Rare Dis. 12, 162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Anjema, K. et al. The neonatal tetrahydrobiopterin loading test in phenylketonuria: what is the predictive value? Orphanet J. Rare Dis. 11, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Evers, R. A. F. et al. The first European guidelines on phenylketonuria: usefulness and implications for BH4 responsiveness testing. J. Inherit. Metab. Dis. 43, 244–250 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Blau, N. & van Spronsen, F. J. in Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases (eds Blau, N., Duran, M., Gibson, K. M. & Vici, C. D.) 3–21 (Springer, 2014).

  117. Kornguth, S., Gilbert-Barness, E., Langer, E. & Hegstrand, L. Golgi-Kopsch silver study of the brain of a patient with untreated phenylketonuria, seizures, and cortical blindness. Am. J. Med. Genet. 44, 443–448 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Leuzzi, V. et al. Subclinical visual impairment in phenylketonuria. A neurophysiological study (VEP-P) with clinical, biochemical, and neuroradiological (MRI) correlations. J. Inherit. Metab. Dis. 21, 351–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. MacDonald, A. et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J. Rare Dis. 15, 171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Knox, W. E. An evaluation of the treatment of phenylketonuria with diets low in phenylalanine. Pediatrics 26, 1–11 (1960).

    Article  CAS  PubMed  Google Scholar 

  121. Rouse, B. M. Phenylalanine deficiency syndrome. J. Pediatr. 69, 246–249 (1966).

    Article  CAS  PubMed  Google Scholar 

  122. Hanley, W. B., Linsao, L., Davidson, W. & Moes, C. A. Malnutrition with early treatment of phenylketonuria. Pediatr. Res. 4, 318–327 (1970).

    Article  CAS  PubMed  Google Scholar 

  123. Pode-Shakked, B. et al. Man made disease: clinical manifestations of low phenylalanine levels in an inadequately treated phenylketonuria patient and mouse study. Mol. Genet. Metab. 110 (Suppl), 66–70 (2013).

    Article  CAS  Google Scholar 

  124. Daly, A., Evans, S., Pinto, A., Ashmore, C. & MacDonald, A. Protein substitutes in PKU; their historical evolution. Nutrients 13, 484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sawin, E. A. et al. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G590–G601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pinto, A. et al. Nutritional status in patients with phenylketonuria using glycomacropeptide as their major protein source. Eur. J. Clin. Nutr. 71, 1230–1234 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Gropper, S. S., Gropper, D. M. & Acosta, P. B. Plasma amino acid response to ingestion of L-amino acids and whole protein. J. Pediatr. Gastroenterol. Nutr. 16, 143–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. MacDonald, A., Ashmore, C., Daly, A., Pinto, A. & Evans, S. An observational study evaluating the introduction of a prolonged-release protein substitute to the dietary management of children with phenylketonuria. Nutrients 12, 2686 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  129. Keil, S. et al. Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics 131, e1881–e1888 (2013).

    Article  PubMed  Google Scholar 

  130. Muntau, A. C. et al. Efficacy, safety and population pharmacokinetics of sapropterin in PKU patients <4 years: results from the SPARK open-label, multicentre, randomized phase IIIb trial. Orphanet J. Rare Dis. 12, 47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Burton, B. K. et al. Pegvaliase for the treatment of phenylketonuria: results of the phase 2 dose-finding studies with long-term follow-up. Mol. Genet. Metab. 130, 239–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Levy, H. L., Sarkissian, C. N. & Scriver, C. R. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol. Genet. Metab. 124, 223–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Sarkissian, C. N. et al. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc. Natl Acad. Sci. USA 96, 2339–2344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gámez, A. et al. Development of pegylated forms of recombinant Rhodosporidium toruloides phenylalanine ammonia-lyase for the treatment of classical phenylketonuria. Mol. Ther. 11, 986–989 (2005).

    Article  PubMed  CAS  Google Scholar 

  135. Gupta, S. et al. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. EBioMedicine 37, 366–373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Longo, N. et al. Evidence- and consensus-based recommendations for the use of pegvaliase in adults with phenylketonuria. Genet. Med. 21, 1851–1867 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Chang, T. M., Bourget, L. & Lister, C. A new theory of enterorecirculation of amino acids and its use for depleting unwanted amino acids using oral enzyme-artificial cells, as in removing phenylalanine in phenylketonuria. Artif. Cell Blood Substit. Immobil. Biotechnol. 23, 1–21 (1995).

    Article  CAS  Google Scholar 

  138. Fisch, R. O., Jenness, R., Doeden, D. & Anderson, J. A. The effect of excess L-phenylalamine on mothers and on their breast-fed infants. J. Pediatr. 71, 176–180 (1967).

    Article  CAS  PubMed  Google Scholar 

  139. Oseid, B. Breast-feeding and infant health. Semin. Perinatol. 3, 249–254 (1979).

    CAS  PubMed  Google Scholar 

  140. McCabe, E. R. & McCabe, L. Issues in the dietary management of phenylketonuria: breast-feeding and trace-metal nutriture. Ann. N. Y. Acad. Sci. 477, 215–222 (1986).

    Article  CAS  PubMed  Google Scholar 

  141. Rocha, J. C. & MacDonald, A. Dietary intervention in the management of phenylketonuria: current perspectives. Pediatr. Health Med. Ther. 7, 155–163 (2016).

    Article  CAS  Google Scholar 

  142. van Rijn, M. et al. A different approach to breast-feeding of the infant with phenylketonuria. Eur. J. Pediatr. 162, 323–326 (2003).

    Article  PubMed  CAS  Google Scholar 

  143. Weinmann, A. et al. Tetrahydrobiopterin is present in high quantity in human milk and has a vasorelaxing effect on newborn rat mesenteric arteries. Pediatr. Res. 69, 325–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Bekhof, J. et al. Influence of knowledge of the disease on metabolic control in phenylketonuria. Eur. J. Pediatr. 162, 440–442 (2003).

    Article  PubMed  Google Scholar 

  145. Ozel, H. G. et al. Does maternal knowledge impact blood phenylalanine concentration in Turkish children with phenylketonuria? J. Inherit. Metab. Dis. 31 (Suppl 2), 213–217 (2008).

    Article  Google Scholar 

  146. Macdonald, A. et al. Does maternal knowledge and parent education affect blood phenylalanine control in phenylketonuria? J. Hum. Nutr. Diet. 21, 351–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Durham-Shearer, S. J., Judd, P. A., Whelan, K. & Thomas, J. E. Knowledge, compliance and serum phenylalanine concentrations in adolescents and adults with phenylketonuria and the effect of a patient-focused educational resource. J. Hum. Nutr. Diet. 21, 474–485 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Crone, M. R. et al. Behavioural factors related to metabolic control in patients with phenylketonuria. J. Inherit. Metab. Dis. 28, 627–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Bilginsoy, C., Waitzman, N., Leonard, C. O. & Ernst, S. L. Living with phenylketonuria: perspectives of patients and their families. J. Inherit. Metab. Dis. 28, 639–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Rudolf, I. et al. Assessment of a mobile app by adolescents and young adults with cystic fibrosis: pilot evaluation. JMIR Mhealth Uhealth 7, e12442 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jahja, R., Huijbregts, S. C. J., de Sonneville, L. M. J., van der Meere, J. J. & van Spronsen, F. J. Neurocognitive evidence for revision of treatment targets and guidelines for phenylketonuria. J. Pediatr. 164, 895–899.e2 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Feldmann, R. et al. Neurocognitive functioning in adults with phenylketonuria: report of a 10-year follow-up. Mol. Genet. Metab. 126, 246–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Leuzzi, V., Chiarotti, F., Nardecchia, F., van Vliet, D. & van Spronsen, F. J. Predictability and inconsistencies of cognitive outcome in patients with phenylketonuria and personalised therapy: the challenge for the future guidelines. J. Med. Genet. 57, 145–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. van Vliet, D. et al. Untreated PKU patients without intellectual disability: what do they teach us? Nutrients 11, 2572 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  155. Burlina, A. P. et al. The neurological and psychological phenotype of adult patients with early-treated phenylketonuria: a systematic review. J. Inherit. Metab. Dis. 42, 209–219 (2019).

    Article  PubMed  Google Scholar 

  156. Klimek, A. et al. Everyday life, dietary practices, and health conditions of adult PKU patients: a multicenter, cross-sectional study. Ann. Nutr. Metab. 76, 251–258 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Burgard, P. et al. Issues with European guidelines for phenylketonuria. Lancet Diabetes Endocrinol. 5, 681–683 (2017).

    Article  PubMed  Google Scholar 

  158. van Spronsen, F. J. et al. Issues with European guidelines for phenylketonuria – Authors’ reply. Lancet Diabetes Endocrinol. 5, 683–684 (2017).

    Article  PubMed  Google Scholar 

  159. De Felice, S., Romani, C., Geberhiwot, T., MacDonald, A. & Palermo, L. Language processing and executive functions in early treated adults with phenylketonuria (PKU). Cogn. Neuropsychol. 35, 148–170 (2018).

    Article  PubMed  Google Scholar 

  160. Palermo, L. et al. Cognitive outcomes in early-treated adults with phenylketonuria (PKU): A comprehensive picture across domains. Neuropsychology 31, 255–267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Palermo, L. et al. Emotional health in early-treated adults with phenylketonuria (PKU): Relationship with cognitive abilities and blood phenylalanine. J. Clin. Exp. Neuropsychol. 42, 142–159 (2020).

    Article  PubMed  Google Scholar 

  162. Romani, C., MacDonald, A., De Felice, S. & Palermo, L. Speed of processing and executive functions in adults with phenylketonuria: quick in finding the word, but not the ladybird. Cogn. Neuropsychol. 35, 171–198 (2018).

    Article  PubMed  Google Scholar 

  163. Romani, C. et al. Adult cognitive outcomes in phenylketonuria: explaining causes of variability beyond average Phe levels. Orphanet J. Rare Dis. 14, 273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Romani, C. et al. Cognitive outcomes and relationships with phenylalanine in phenylketonuria: a comparison between Italian and English adult samples. Nutrients 12, 3033 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  165. Romani, C. et al. The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: effects across tasks and developmental stages. Neuropsychology 31, 242–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Manti, F. et al. Psychiatric disorders in adolescent and young adult patients with phenylketonuria. Mol. Genet. Metab. 117, 12–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Nardecchia, F., Manti, F., De Leo, S., Carducci, C. & Leuzzi, V. Clinical characterization of tremor in patients with phenylketonuria. Mol. Genet. Metab. 128, 53–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Nardecchia, F. et al. Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: a longitudinal study. Mol. Genet. Metab. 115, 84–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Scala, I. et al. Large neutral amino acids (LNAAs) supplementation improves neuropsychological performances in adult patients with phenylketonuria. Nutrients 12, 1092 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  170. Weglage, J. et al. Neurocognitive functioning in adults with phenylketonuria: results of a long term study. Mol. Genet. Metab. 110 (Suppl), 44–48 (2013).

    Article  CAS  Google Scholar 

  171. Bartus, A. et al. The influence of blood phenylalanine levels on neurocognitive function in adult PKU patients. Metab. Brain Dis. 33, 1609–1615 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Christ, S. E. et al. Executive function in phenylketonuria (PKU): insights from the Behavior Rating Inventory of Executive Function (BRIEF) and a large sample of individuals with PKU. Neuropsychology 34, 456–466 (2020).

    Article  PubMed  Google Scholar 

  173. Hellewell, S. C., Welton, T., Eisenhuth, K., Tchan, M. C. & Grieve, S. M. Diffusion kurtosis imaging detects subclinical white matter abnormalities in phenylketonuria. Neuroimage Clin. 29, 102555 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jahja, R. et al. Cognitive profile and mental health in adult phenylketonuria: a PKU-COBESO study. Neuropsychology 31, 437–447 (2017).

    Article  PubMed  Google Scholar 

  175. Sundermann, B. et al. Approaching altered inhibitory control in phenylketonuria: a functional MRI study with a Go-NoGo task in young female adults. Eur. J. Neurosci. 52, 3951–3962 (2020).

    Article  PubMed  Google Scholar 

  176. Bessman, S. P. PKU–some skepticism. N. Engl. J. Med. 278, 1176–1177 (1968).

    Article  CAS  PubMed  Google Scholar 

  177. Bessman, S. P. Historical perspective: tyrosine and maternal phenylketonuria, welcome news. Am. J. Clin. Nutr. 67, 357–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Bessman, S. P. The justification theory: the essential nature of the non-essential amino acids. Nutr. Rev. 37, 209–220 (1979).

    Article  CAS  PubMed  Google Scholar 

  179. Cabalska, B. et al. Termination of dietary treatment in phenylketonuria. Eur. J. Pediatr. 126, 253–262 (1977).

    Article  CAS  PubMed  Google Scholar 

  180. Poustie, V. J. & Wildgoose, J. Dietary interventions for phenylketonuria. Cochrane Database Syst. Rev. 1, CD001304 (2010).

    Google Scholar 

  181. Waisbren, S. E., Schnell, R. R. & Levy, H. L. Diet termination in children with phenylketonuria: a review of psychological assessments used to determine outcome. J. Inherit. Metab. Dis. 3, 149–153 (1980).

    Article  CAS  PubMed  Google Scholar 

  182. Diamond, A. Phenylalanine levels of 6-10mg/dl may not be as benign as once thought. Acta Paediatr. 407, 89–91 (1994).

    Article  CAS  Google Scholar 

  183. Waisbren, S. E. et al. Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol. Genet. Metab. 92, 63–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Lammardo, A. M. et al. Main issues in micronutrient supplementation in phenylketonuria. Mol. Genet. Metab. 110 (Suppl), 1–5 (2013).

    Article  CAS  Google Scholar 

  185. Mabry, C. C., Denniston, J. C., Nelson, T. L. & Son, C. D. Maternal phenylketonuria. A cause of mental retardation in children without the metabolic defect. N. Engl. J. Med. 269, 1404–1408 (1963).

    Article  CAS  PubMed  Google Scholar 

  186. Lenke, R. R. & Levy, H. L. Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N. Engl. J. Med. 303, 1202–1208 (1980).

    Article  CAS  PubMed  Google Scholar 

  187. Drogari, E., Smith, I., Beasley, M. & Lloyd, J. K. Timing of strict diet in relation to fetal damage in maternal phenylketonuria. An international collaborative study by the MRC/DHSS Phenylketonuria Register. Lancet 2, 927–930 (1987).

    Article  CAS  PubMed  Google Scholar 

  188. Maillot, F., Lilburn, M., Baudin, J., Morley, D. W. & Lee, P. J. Factors influencing outcomes in the offspring of mothers with phenylketonuria during pregnancy: the importance of variation in maternal blood phenylalanine. Am. J. Clin. Nutr. 88, 700–705 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Koch, R. et al. The maternal phenylketonuria international study: 1984–2002. Pediatrics 112, 1523–1529 (2003).

    Article  PubMed  Google Scholar 

  190. Grange, D. K. et al. Sapropterin dihydrochloride use in pregnant women with phenylketonuria: an interim report of the PKU MOMS sub-registry. Mol. Genet. Metab. 112, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Feillet, F. et al. Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J. Inherit. Metab. Dis. 37, 753–762 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Teissier, R. et al. Maternal phenylketonuria: low phenylalaninemia might increase the risk of intra uterine growth retardation. J. Inherit. Metab. Dis. 35, 993–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Dhondt, J. L., Loeber, J., Elvers, L. H. & Paux, E. Preparation of the first European working standard for phenylalanine determination in dried blood spots. J. Med. Screen. 5, 63–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Gregory, C. O., Yu, C. & Singh, R. H. Blood phenylalanine monitoring for dietary compliance among patients with phenylketonuria: comparison of methods. Genet. Med. 9, 761–765 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Groselj, U. et al. Comparison of tandem mass spectrometry and amino acid analyzer for phenylalanine and tyrosine monitoring–implications for clinical management of patients with hyperphenylalaninemia. Clin. Biochem. 48, 14–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Holub, M. et al. Influence of hematocrit and localisation of punch in dried blood spots on levels of amino acids and acylcarnitines measured by tandem mass spectrometry. Clin. Chim. Acta 373, 27–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Lawson, A. J., Bernstone, L. & Hall, S. K. Newborn screening blood spot analysis in the UK: influence of spot size, punch location and haematocrit. J. Med. Screen. 23, 7–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. van Vliet, K. et al. Dried blood spot versus venous blood sampling for phenylalanine and tyrosine. Orphanet J. Rare Dis. 15, 82 (2020).

    Article  PubMed  Google Scholar 

  199. Koch, R. et al. Long-term beneficial effects of the phenylalanine-restricted diet in late-diagnosed individuals with phenylketonuria. Mol. Genet. Metab. 67, 148–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Singh, R. H. et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet. Med. 16, 121–131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Vockley, J. et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet. Med. 16, 188–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Bosch, A. M. et al. The course of life and quality of life of early and continuously treated Dutch patients with phenylketonuria. J. Inherit. Metab. Dis. 30, 29–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Simon, E. et al. Evaluation of quality of life and description of the sociodemographic state in adolescent and young adult patients with phenylketonuria (PKU). Health Qual. Life Outcomes 6, 25 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Thimm, E., Schmidt, L. E., Heldt, K. & Spiekerkoetter, U. Health-related quality of life in children and adolescents with phenylketonuria: unimpaired HRQoL in patients but feared school failure in parents. J. Inherit. Metab. Dis. 36, 767–772 (2013).

    Article  PubMed  Google Scholar 

  205. Demirdas, S. et al. Evaluation of quality of life in PKU before and after introducing tetrahydrobiopterin (BH4); a prospective multi-center cohort study. Mol. Genet. Metab. 110 (Suppl), 49–56 (2013).

    Article  CAS  Google Scholar 

  206. Cazzorla, C. et al. Quality of life (QoL) assessment in a cohort of patients with phenylketonuria. BMC Public. Health 14, 1243 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Bosch, A. M. et al. Assessment of the impact of phenylketonuria and its treatment on quality of life of patients and parents from seven European countries. Orphanet J. Rare Dis. 10, 80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Feldmann, R., Wolfgart, E., Weglage, J. & Rutsch, F. Sapropterin treatment does not enhance the health-related quality of life of patients with phenylketonuria and their parents. Acta Paediatr. 106, 953–959 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Huijbregts, S. C. J. et al. The impact of metabolic control and tetrahydrobiopterin treatment on health related quality of life of patients with early-treated phenylketonuria: a PKU-COBESO study. Mol. Genet. Metab. 125, 96–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Cotugno, G. et al. Adherence to diet and quality of life in patients with phenylketonuria. Acta Paediatr. 100, 1144–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Vieira Neto, E. et al. Quality of life and adherence to treatment in early-treated Brazilian phenylketonuria pediatric patients. Braz. J. Med. Biol. Res. 51, e6709 (2017).

    Article  CAS  Google Scholar 

  212. Bik-Multanowski, M. et al. Quality of life in noncompliant adults with phenylketonuria after resumption of the diet. J. Inherit. Metab. Dis. 31 (Suppl 2), 415–418 (2008).

    Article  Google Scholar 

  213. ten Hoedt, A. E. et al. High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: a randomised, double-blind, placebo-controlled, crossover trial. J. Inherit. Metab. Dis. 34, 165–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Ziesch, B. et al. Tetrahydrobiopterin (BH4) in PKU: effect on dietary treatment, metabolic control, and quality of life. J. Inherit. Metab. Dis. 35, 983–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Harding, C. O. et al. Pegvaliase for the treatment of phenylketonuria: a pivotal, double-blind randomized discontinuation phase 3 clinical trial. Mol. Genet. Metab. 124, 20–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Regnault, A. et al. Development and psychometric validation of measures to assess the impact of phenylketonuria and its dietary treatment on patients’ and parents’ quality of life: the phenylketonuria – quality of life (PKU-QOL) questionnaires. Orphanet J. Rare Dis. 10, 59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Mapi: Merck-Serono. Phenylketonuria impact and treatment Quality Of Life Questionnaire (PKU-QOL). https://eprovide.mapi-trust.org/instruments/phenylketonuria-impact-and-treatment-quality-of-life-questionnaire

  218. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Ahmed, S. S. et al. Sustained correction of a murine model of phenylketonuria following a single intravenous administration of AAVHSC15-PAH. Mol. Ther. Methods Clin. Dev. 17, 568–580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Oh, H.-J., Park, E.-S., Kang, S., Jo, I. & Jung, S.-C. Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer. Pediatr. Res. 56, 278–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Mochizuki, S. et al. Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Ther. 11, 1081–1086 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Harding, C. O. et al. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Ther. 13, 457–462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ding, Z., Georgiev, P. & Thöny, B. Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther. 13, 587–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Yagi, H. et al. Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. J. Gene Med. 13, 114–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Thöny, B., Ding, Z., Rebuffat, A. & Viecelli, H. M. Phenotypic reversion of fair hair upon gene therapy of the phenylketonuria mice. Hum. Gene Ther. 25, 573–574 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Rebuffat, A., Harding, C. O., Ding, Z. & Thöny, B. Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum. Gene Ther. 21, 463–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wagemaker, G. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders. Hum. Gene Ther. 25, 862–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. An, D. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 21, 3548–3558 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Truong, B. et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc. Natl Acad. Sci. USA 116, 21150–21159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cao, J. et al. mRNA therapy improves metabolic and behavioral abnormalities in a murine model of citrin deficiency. Mol. Ther. 27, 1242–1251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jiang, L. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 24, 1899–1909 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Zhu, X. et al. Systemic mRNA therapy for the treatment of Fabry disease: preclinical studies in wild-type mice, Fabry mouse model, and wild-type non-human primates. Am. J. Hum. Genet. 104, 625–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Balakrishnan, B. et al. Novel mRNA-based therapy reduces toxic galactose metabolites and overcomes galactose sensitivity in a mouse model of classic galactosemia. Mol. Ther. 28, 304–312 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Pascucci, T. et al. A new therapy prevents intellectual disability in mouse with phenylketonuria. Mol. Genet. Metab. 124, 39–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Rossi, L. et al. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pah(enu2) mice. J. Control. Rel. 194, 37–44 (2014).

    Article  CAS  Google Scholar 

  236. Smith, N., Longo, N., Levert, K., Hyland, K. & Blau, N. Exploratory study of the effect of one week of orally administered CNSA-001 (sepiapterin) on CNS levels of tetrahydrobiopterin, dihydrobiopterin and monoamine neurotransmitter metabolites in healthy volunteers. Mol. Genet. Metab. Rep. 21, 100500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Smith, N., Longo, N., Levert, K., Hyland, K. & Blau, N. Phase I clinical evaluation of CNSA-001 (sepiapterin), a novel pharmacological treatment for phenylketonuria and tetrahydrobiopterin deficiencies, in healthy volunteers. Mol. Genet. Metab. 126, 406–412 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Vockley, J., Sacharow, S., Searle, S., Kurtz, C. & Querbes, W. A phase 1/2a oral placebo-controlled study of SYNB1618 in healthy adult volunteers and subjects with phenylketonuria [abstract O-027]. J. Inherit. Metab. Dis. 42 (Suppl. 1), 13 (2019).

    Google Scholar 

  240. Lane, J. D., Schöne, B., Langenbeck, U. & Neuhoff, V. Characterization of experimental phenylketonuria augmentation of hyperphenylalaninemia with α-methylphenylalanine and p-chlorophenylalanine. Biochim. Biophys. Acta 627, 144–156 (1980).

    Article  CAS  PubMed  Google Scholar 

  241. Haefele, M. J., White, G. & McDonald, J. D. Characterization of the mouse phenylalanine hydroxylase mutation Pah(enu3). Mol. Genet. Metab. 72, 27–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  242. Richards, D. Y. et al. A novel Pah-exon1 deleted murine model of phenylalanine hydroxylase (PAH) deficiency. Mol. Genet. Metab. 131, 306–315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Koppes, E. A. et al. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 5, e141523 (2020).

    Article  PubMed Central  Google Scholar 

  244. Kaiser, R. A. et al. Development of a porcine model of phenylketonuria with a humanized R408W mutation for gene editing. PLoS ONE 16, e0245831 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Douglas, T. D., Ramakrishnan, U., Kable, J. A. & Singh, R. H. Longitudinal quality of life analysis in a phenylketonuria cohort provided sapropterin dihydrochloride. Health Qual. Life Outcomes 11, 218 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Abeln for giving his thoughts from the perspective of a parent.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.J.v.S., N.B., C.H., A.B., N.L. and A.M.B.); Epidemiology (N.B.); Mechanisms/pathophysiology (C.H. and F.J.v.S.); Diagnosis, screening and prevention (N.B. and A.B.); Management (F.J.v.S.); Quality of life (F.J.v.S. and A.M.B.); Outlook (F.J.v.S. and N.L.).

Corresponding author

Correspondence to Francjan J. van Spronsen.

Ethics declarations

Competing interests

F.J.v.S. has been a member of scientific advisory boards for defects in amino acid metabolism of APR, Agios, Arla Food International, BioMarin, Eurocept Int, Lucana, Moderna TX, Nutricia, Rivium, Homoly and Nestlé-Codexis; his institute has received research grants from Alexion, Biomarin, Codexis, Nutricia, SoBi and Vitaflo; his institute has received grants from patient organizations ESPKU, Metakids, NPKUA, Stofwisselkracht, Stichting PKU research and the Tyrosinemia Foundation; and his institute has received honoraria as consultant and speaker from APR, Pluvia, Biomarin, MendeliKABS and Nutricia. N.B. has received honoraria and/or consulting fees from BioMarin, Pharmaceuticals, Censa, Nestlé Pharmaceuticals and Homology Medicines. C.H. has received consulting fees, speaker fees, and travel and research support from BioMarin, Cydan Development Inc., Dimension Therapeutics, Horizon Pharma, Pfizer, Rubius Therapeutics, StrideBio and Synlogic. A.B. has received advisory board honoraria, speaker fees and travel support from Biomarin Pharmaceuticals, Nutricia, Cambrooke, PIAM, APR, Sanofi Genzyme and Takeda. N.L. has received consulting fees from Aeglea, BioMarin, Censa Pharmaceuticals, Dimension Therapeutics, Genzyme/Sanofi, Hemoshear, Horizon, Lumos Pharma, Moderna, Mitobridge, Pfizer, Retrophin and Stealth Therapeutics, and has conducted contracted research for Aeglea, BioMarin, Genzyme/Sanofi, Horizon, Lumos Pharma, Protalix, Retrophin, Shire, Stealth Therapeutics and Ultragenyx. A.M.B. has received a speaker fee from Nutricia and has been a member of advisory boards for Biomarin.

Additional information

Peer review information

Nature Reviews Disease Primers thanks T. Coskun, L. Desviat, H. Levy, A. MacDonald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NIH toolbox: https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox/intro-to-nih-toolbox

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Spronsen, F.J., Blau, N., Harding, C. et al. Phenylketonuria. Nat Rev Dis Primers 7, 36 (2021). https://doi.org/10.1038/s41572-021-00267-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00267-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing