Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbispofurans A–C, plant growth-promoting furancarboxylic acids from plant root-derived Microbispora sp.

Abstract

Microbispofurans A–C (13), new alkyl/alkenyl furancarboxylic acids, were isolated from the culture extract of the plant root-derived Microbispora sp. RD004716. The planar structures of 13 were determined by extensive analysis of 1D and 2D NMR spectroscopic data. Although 13 showed no appreciable antimicrobial activity or cytotoxicity, strong plant growth-promotion activity of the germinated red leaf lettuce seeds was observed at 10 μM. Furancarboxylic acids and their methyl esters were found in actinomycetes and fungi; however, the isolation of furandicarboxylic acid was unprecedented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ramachandra M, Crawford DL, Hertel G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol. 1988;54:3057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson DB. Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol. 1992;12:45–63.

    Article  CAS  PubMed  Google Scholar 

  3. Niladevi KN, Prema P. Mangrove Actinomycetes as the source of ligninolytic enzymes. Actinomycetologica. 2005;19:40–7.

    Article  CAS  Google Scholar 

  4. McCarthy AJ. Lignocellulose-degrading actinomycetes. FEMS Microbiol Lett. 2006;46:145–63.

    Article  Google Scholar 

  5. Brzezinska MS, Jankiewicz U, Walczak M. Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior Biodegrad. 2013;84:104–10.

    Article  CAS  Google Scholar 

  6. Banik S, Dey BK. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant Soil. 1982;69:353–64.

    Article  CAS  Google Scholar 

  7. Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol. 2008;38:12–9.

    Article  Google Scholar 

  8. Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 2017;8:1–8.

    Article  Google Scholar 

  9. Igarashi Y, Iida T, Yoshida R, Furumai T. Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot. 2002;55:764–7.

    Article  CAS  Google Scholar 

  10. Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol. 2009;25:649–55.

    Article  CAS  Google Scholar 

  11. Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol. 2016;47:85–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu S, Harunari E, Oku N, Igarashi Y, Trehangelin E. a bisacyl trehalose with plant growth promoting activity from a rare actinomycete Polymorphospora sp. RD064483. J Antibiot. 2022;75:296–300.

    Article  CAS  Google Scholar 

  13. Shutsrirung A, Chromkaew Y, Pathom-Aree W, Choonluchanon S, Boonkerd N. Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr. 2013;59:322–30.

    Article  CAS  Google Scholar 

  14. Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: Indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol. 2013;29:1821–9.

    Article  CAS  PubMed  Google Scholar 

  15. Verma VC, Singh SK, Prakash S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol. 2011;51:550–6.

    Article  CAS  PubMed  Google Scholar 

  16. Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res. 2014;169:59–65.

    Article  CAS  PubMed  Google Scholar 

  17. Janso JE, Carter GT. Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol. 2010;76:4377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsumoto A, Takahashi Y. Endophytic actinomycetes: Promising source of novel bioactive compounds. J Antibiot. 2017;70:514–9.

    Article  CAS  Google Scholar 

  19. Indananda C, Igarashi Y, Ikeda M, Oikawa T, Thamchaipenet A. Linfuranone A, a new polyketide from plant-derived Microbispora sp. GMKU 363. J Antibiot. 2013;66:675–7.

    Article  CAS  Google Scholar 

  20. Araújo JM, de, Silva AC, da, Azevedo JL. Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol. 2000;43:447–51.

    Article  Google Scholar 

  21. Kim SH, Shin Y, Lee SH, et al. Salternamides A-D from a halophilic Streptomyces sp. actinobacterium. J Nat Prod. 2015;78:836–43.

    Article  CAS  PubMed  Google Scholar 

  22. Greule A, Marolt M, Deubel D, et al. Wide distribution of foxicin biosynthetic gene clusters in Streptomyces strains - an unusual secondary metabolite with various properties. Front Microbiol. 2017;8:221.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilkins K, Schöller C. Volatile organic metabolites from selected Streptomyces strains. Actinomycetologica. 2009;23:27–33.

    Article  CAS  Google Scholar 

  24. Citron CA, Rabe P, Dickschat JS. The scent of bacteria: Headspace analysis for the discovery of natural products. J Nat Prod. 2012;75:1765–76.

    Article  CAS  PubMed  Google Scholar 

  25. Groenhagen U, Leandrini De Oliveira AL, Fielding E, Moore BS, Schulz S. Coupled biosynthesis of volatiles and salinosporamide A in Salinispora tropica. ChemBioChem 2016;17:1978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jadulco R, Proksch P, Wray V, Sudarsono, Berg A, Gräfe U. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J Nat Prod. 2001;64:527–30.

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Uchida K, Ridwan AY, et al. Erinachromanes A and B and erinaphenol A from the Culture Broth of Hericium erinaceus. J Agric Food Chem. 2019;67:3134–9.

    Article  CAS  PubMed  Google Scholar 

  28. Thiyagarajan S, Vogelzang W, JI Knoop R, Frissen AE, Van Haveren J, Van Es DS. Biobased furandicarboxylic acids (FDCAs): Effects of isomeric substitution on polyester synthesis and properties. Green Chem. 2014;16:1957–66.

    Article  CAS  Google Scholar 

  29. Sharma AR, Harunari E, Oku N, Matsuura N, Trianto A, Igarashi Y. Two antibacterial and PPARα/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus. Beilstein J Org Chem. 2020;16:297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahashi N, editor. Shokubutsu-kagaku-chosetsu-jikkenho (Experimental Protocols for Chemical Regulation of Plants). The Japanese Society for Chemical Regulation of Plants; 1989. p. 140−1 (in Japanese).

Download references

Acknowledgements

P388 cells were obtained from JCRB Cell Bank under accession code JCRB0017 (Lot. 06252002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harunari, E., Mae, S. & Igarashi, Y. Microbispofurans A–C, plant growth-promoting furancarboxylic acids from plant root-derived Microbispora sp.. J Antibiot 76, 392–396 (2023). https://doi.org/10.1038/s41429-023-00614-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00614-1

Search

Quick links