Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation and structure determination of allopteridic acids A–C and allokutzmicin from an unexplored actinomycete of the genus Allokutzneria

Abstract

Two classes of new polyketides, allopteridic acids A–C (13) and allokutzmicin (4), were isolated from the culture extract of an actinomycete of the genus Allokutzneria. The structures of 14 were elucidated through the interpretation of NMR and MS analytical data. Compounds 13 possess the same carbon skeleton with pteridic acids but their monocyclic core structures are distinct from the spiro-bicyclic acetal structures of pteridic acids. Compound 4 is a linear polyketide of an unprecedented class, featured by a guanidino-terminus and an epoxide modification. Compounds 13 promoted the root elongation of germinated lettuce seeds by ca. 10–40% at 1~10 μM whereas 4 retarded the seed growth. Compound 4 exhibited weak antimicrobial activity against Candida albicans with MIC 25 μg mL−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Becerril A, et al. Discovery of cryptic largimycins in Streptomyces reveals novel biosynthetic avenues enriching the structural diversity of the leinamycin family. ACS Chem Biol. 2020;15:1541–53.

    Article  CAS  PubMed  Google Scholar 

  2. He J, Van Treeck B, Nguyen HB, Melançon CE 3rd. Development of an unnatural amino acid incorporation system in the actinobacterial natural product producer Streptomyces venezuelae ATCC 15439. ACS Synth Biol. 2016;5:125–32.

    Article  CAS  PubMed  Google Scholar 

  3. Tiwari K, Gupta RK. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol. 2012;32:108–32.

    Article  CAS  PubMed  Google Scholar 

  4. Subramani R, Aalbersberg W. Culturable rare actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol. 2013;97:9291–321.

    Article  CAS  PubMed  Google Scholar 

  5. Tiwari K, Gupta RK. Bioactive metabolites from rare actinomycetes. Stud Nat Prod Chem. 2014;41:419–512.

    Article  CAS  Google Scholar 

  6. Hoshino S, Okada M, Awakawa T, Asamizu S, Onaka H, Abe I. Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived rare actinomycete. Org Lett. 2017;19:4992–5.

    Article  CAS  PubMed  Google Scholar 

  7. Kurtböke DI. Biodiscovery from rare actinomycetes: an eco-taxonomical perspective. Appl Microbiol Biotechnol. 2012;93:1843–52.

    Article  PubMed  Google Scholar 

  8. Meier-Kolthoff JP, Sardà Carbasse J, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–7.

    Article  CAS  PubMed  Google Scholar 

  9. Dictionary of Natural Products 30.2 Chemical Search. CRC Press, LLC. 2022. https://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml.

  10. Lauterbach L, Rinkel J, Dickschat JS. Two bacterial diterpene synthases from Allokutzneria albata produce bonnadiene, phomopsene, and allokutznerene. Angew Chem Int Ed Engl. 2018;57:8280–3.

    Article  CAS  PubMed  Google Scholar 

  11. Rinkel J, Lauterbach L, Rabe P, Dickschat JS. Two diterpene synthases for spiroalbatene and cembrene A from Allokutzneria albata. Angew Chem Int Ed Engl. 2018;57:3238–41.

    Article  CAS  PubMed  Google Scholar 

  12. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–W35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biological Resource Center, NITE (NBRC) Home Page. https://www.nite.go.jp/nbrc/ (accessed 30 Dec 2022).

  14. Igarashi Y, Iida T, Yoshida R, Furumai T. Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot. 2002;55:764–7.

    Article  CAS  Google Scholar 

  15. Nong XH, Wei XY, Qi SH. Pteridic acids C-G spirocyclic polyketides from the marine-derived Streptomyces sp. SCSGAA 0027. J Antibiot. 2017;70:1047–52.

    Article  CAS  Google Scholar 

  16. Garry RS, Robert M. Synthesis of methyl α-L-vancosaminide. Carbohydr Res. 1999;323:208–12.

    Article  Google Scholar 

  17. Rubinstein E, Keynan Y. Vancomycin revisited-60 years later. Front Public Health. 2014;2:217.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Igarashi Y, et al. Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. II. Physico-chemical properties and structure determination. J Antibiot. 2003;56:705–8.

    Article  CAS  Google Scholar 

  19. Kobayashi J, Kubota T, Takahashi M, Ishibashi M, Tsuda M, Naoki H. Colopsinol A, a novel polyhydroxyl metabolite from marine dinoflagellate Amphidinium sp. J Org Chem. 1999;64:1478–82.

    Article  CAS  PubMed  Google Scholar 

  20. Corley DG, Moore RE, Paul VJ. Patellazole B: a novel cytotoxic thiazole-containing macrolide from the marine tunicate Lissoclinum patella. J Am Chem Soc. 1988;110:7920–2.

    Article  CAS  Google Scholar 

  21. Du G, Tekin A, Hammond EG, Woo LK. Catalytic epoxidation of methyl linoleate. J Am Oil Chem Soc. 2004;81:477–80.

    Article  CAS  Google Scholar 

  22. Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. A method of configuration analysis for natural products. J Org Chem. 1999;64:866–76.

    Article  CAS  PubMed  Google Scholar 

  23. Meissner A, Sørensen OW. Measurement of J(H,H) and long-range J(X,H) coupling constants in small molecules. Broadband XLOC and J-HMBC. Magn Reson Chem. 2001;39:49–52.

    Article  CAS  Google Scholar 

  24. Dobashi K, Naganawa H, Takahashi Y, Takita T, Takeuchi T. Novel antifungal antibiotics octacosamicins A and B. II. The structure elucidation using various NMR spectroscopic methods. J Antibiot. 1988;41:1533–41.

    Article  CAS  Google Scholar 

  25. Chandra A, Nair MG. Azalomycin F complex from Streptomyces hygroscopicus, MSU/MN-4-75B. J Antibiot. 1995;48:896–8.

    Article  CAS  Google Scholar 

  26. Stubbendieck RM, Straight PD. Escape from lethal bacterial competition through coupled activation of antibiotic resistance and a mobilized subpopulation. PLoS Genet. 2015;11:e1005722.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vandana UK, et al. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology. 2021;10:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saito S, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;16:1100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saito S, Indo K, Oku N, Komaki H, Kawasaki M, Igarashi Y. Unsaturated fatty acids and a prenylated tryptophan derivative from a rare actinomycete of the genus Couchioplanes. Beilstein J Org Chem. 2021;17:2939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saito S, Oku N, Igarashi Y. Mycetoindole, an N-acyl dehydrotryptophan with plant growth inhibitory activity from an actinomycete of the genus Actinomycetospora. J Antibiot. 2022;75:44–7.

    Article  CAS  Google Scholar 

  31. Lu S, Harunari E, Oku N, Igarashi Y. Trehangelin E, a bisacyl trehalose with plant growth promoting activity from a rare actinomycete Polymorphospora sp. RD064483. J Antibiot. 2022;75:296–300.

    Article  CAS  Google Scholar 

  32. Saito S, et al. Phytohabitols A–C, δ-lactone-terminated polyketides from an actinomycete of the genus Phytohabitans. J Nat Prod. 2022;85:1697–703.

    Article  CAS  PubMed  Google Scholar 

  33. Liu C, et al. Catellatolactams A–C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. J Nat Prod. 2022;85:1993–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu C, Yamamura H, Hayakawa M, Zhang Z, Oku N, Igarashi Y. Plant growth-promoting and antimicrobial chloropyrroles from a rare actinomycete of the genus Catellatospora. J Antibiot. 2022;75:655–61.

    Article  CAS  Google Scholar 

  35. Zhang Z, et al. Kumemicinones A–G, cytotoxic angucyclinones from a deep sea-derived actinomycete of the genus Actinomadura. J Nat Prod. 2022;85:1098–108.

    Article  CAS  PubMed  Google Scholar 

  36. Harunari E, Mae S, Fukaya K, Tashiro E, Urabe D, Igarashi Y. Bisprenyl naphthoquinone and chlorinated calcimycin congener bearing thiazole ring from an actinomycete of the genus Phytohabitans. J Antibiot. 2022;75:542–51.

    Article  CAS  Google Scholar 

  37. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A–C, antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species. J Nat Prod. 2020;83:1295–9.

    Article  PubMed  Google Scholar 

  38. Sharma AR, Zhou T, Harunari E, Oku N, Trianto A, Igarashi Y. Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot. 2019;72:634–9.

    Article  Google Scholar 

  39. Takahashi N (ed.). Shokubutsu-kagaku-chosetsu-jikkenho (Experimental protocols for chemical regulation of plants). Tokyo: The Japanese Society for Chemical Regulation of Plants; 1989. p. 140–1 (in Japanese).

Download references

Acknowledgements

P388 cells were obtained from JCRB Cell Bank under an accession code JCRB0017 (Lot. 06252002). This work was supported by JSPS KAKENHI Grant Number 19K05848 to Y. I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, Z., Fukaya, K. et al. Isolation and structure determination of allopteridic acids A–C and allokutzmicin from an unexplored actinomycete of the genus Allokutzneria. J Antibiot 76, 305–315 (2023). https://doi.org/10.1038/s41429-023-00611-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00611-4

Search

Quick links