Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic enaminones and a 4-quinazolinone from an unidentified actinomycete of the family Micromonosporaceae

Abstract

Four novel cyclic enaminones, designated RD4123A−D (14), and a new 4-quinazolinone metabolite, RD4123E (5), were isolated from the culture extract of an unidentified actinomycete strain RD004123, which belongs to the family Micromonosporaceae. Structures of 15 were determined by spectroscopic analyses using NMR, MS, and electronic circular dichroism (ECD), combined with quantum chemical calculations of ECD and NMR chemical shifts and biosynthetic consideration. Compounds 15 showed weak to modest cytotoxicity against murine leukemia P388 cells, while being inactive against bacteria and fungi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.

    Article  CAS  Google Scholar 

  2. Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

    Article  Google Scholar 

  3. Watve MG, Tichoo R, Jog MM, Bhole B. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 2001;176:386–90.

    Article  CAS  Google Scholar 

  4. Dictionary of Natural Products 29.2 Chemical Search. https://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml (accessed September, 2021).

  5. Parte AC, Sardà Carbasse,J Meier-Kolthoff JP, Reimer LC, Göker, M List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020; 70:5607-12 List of prokaryotic names with standing in nomenclature. http://www.bacterio.net (accessed September 21, 2021).

  6. List of available RD strains on domestically derived strains. https://www.nite.go.jp/nbrc/cultures/rd/available_rd_list.html (Accessed November, 2021).

  7. Wang X, Jia F, Liu C, Zhao J, Wang L, Shen Y, et al. Xiangella phaseoli gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol. 2013;63:2138–45.

    Article  CAS  Google Scholar 

  8. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol. 2018;9:2007.

    Article  Google Scholar 

  9. Lv M, Zhao J, Deng Z, Yu Y. Characterization of the biosynthetic gene cluster for benzoxazole antibiotics a33853 reveals unusual assembly logic. Chem Biol. 2015;22:1313–24.

    Article  CAS  Google Scholar 

  10. Song H, Rao C, Deng Z, Yu Y, Naismith JH. The biosynthesis of the benzoxazole in nataxazole proceeds via an unstable ester and has synthetic utility. Angew Chem Int Ed. 2020;59:6054–61.

    Article  CAS  Google Scholar 

  11. Martin GE, Hadden CE. Long-range 1H−15N heteronuclear shift correlation at natural abundance. J Nat Prod. 2000;63:543–85.

    Article  CAS  Google Scholar 

  12. Noble M, Noble D, Sykes RB. G7063-2, a new nitrogen-containing antibiotic of the epoxydon group, isolated from the fermentation broth of a species of Streptomyces. J Antibiot. 1977;30:455–9.

    Article  CAS  Google Scholar 

  13. Reddy GCS, Sood RS, Nadkarni SR, Reden J, Ganguli BN, Fehlhaber HW, et al. Stereochemistry of the epoxydon group antibiotic G7063-2 isolated from a Streptomyces species hpl y-25711. J Antibiot. 1984;37:1596–9.

    Article  CAS  Google Scholar 

  14. Itoh Y, Haneishi T, Arai M, Hata T, Aiba K, Tamura C. New antibiotics, enaminomycins A, B and C. J Antibiot. 1978;31:838–46.

    Article  CAS  Google Scholar 

  15. Orezzi GP, Arlandini E, Ballabio M, Cassinelli G, Di Matteo E, Garofano ML, et al. Epoxydon-like antibiotics. Kangshengsu. 1986;11:474–84.

  16. Glaus MA, Heijman CG, Schwarzenbach RP, Zeyer J. Reduction of nitroaromatic compounds mediated by Streptomyces sp. exudates. J Appl Environ Microbiol. 1992;58:1945–51.

    Article  CAS  Google Scholar 

  17. Spiteller P, Steglich W. Blennione, a green aminobenzoquinone derivative from Lactarius blennius. J Nat Prod. 2002;65:725–7.

    Article  CAS  Google Scholar 

  18. Zhang X, Shu C, Li Q, Lian X-Y, Zhang Z. Novel cyclohexene and benzamide derivatives from marine-associated Streptomyces sp. ZZ502. Nat Prod Res. 2019;33:2151–9.

    Article  CAS  Google Scholar 

  19. Wiley PF, Mizsak SA, Baczynskyj L, Argoudelis AD, Duchamp DJ, Watt W, et al. The structure and chemistry of paulomycin. J Org Chem. 1986;51:2493–9.

    Article  CAS  Google Scholar 

  20. González A, Rodríguez M, Braña AF, Méndez C, Salas JA, Olano C, et al. New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis. Microb Cell Fact. 2016;15:56.

    Article  Google Scholar 

  21. Sarmiento-Vizcaíno A, Braña AF, Pérez-Victoria I, Martín J, De Pedro N, Cruz M, et al. Paulomycin G, a new natural product with cytotoxic activity against tumor cell lines produced by deep-sea sediment derived Micromonospora matsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea. Mar Drugs. 2017;15:271.

    Article  Google Scholar 

  22. Hoz JF, Méndez C, Salas JA, Olano C. bioactive paulomycin derivatives produced by Streptomyces albus J1074. Molecules. 2017;22:1758.

    Article  Google Scholar 

  23. Gomes PB, Nett M, Dahse H-M, Hertweck C. Pitucamycin: structural merger of a phenoxazinone with an epoxyquinone antibiotic. J Nat Prod. 2010;73:1461–4.

    Article  CAS  Google Scholar 

  24. Nett M, Hertweck C. Farinamycin, a quinazoline from Streptomyces griseus. J Nat Prod. 2011;74:2265–8.

    Article  CAS  Google Scholar 

  25. Wahan SK, Sharma B, Chawla PA. Medicinal perspective of quinazolinone derivatives: recent developments and structure–activity relationship studies. J Heterocycl Chem. 2021;59:239–57.

    Article  Google Scholar 

  26. Shang X-F, Morris-Natschke SL, Liu Y-Q, Guo X, Xu X-S, Goto M, et al. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev. 2018;38:775–828.

    Article  CAS  Google Scholar 

  27. Shang X-F, Morris-Natschke SL, Yang G-Z, Liu Y-Q, Guo X, Goto M, et al. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev. 2018;38:1614–60.

    Article  Google Scholar 

  28. Maskey RP, Shaaban M, Grün-Wollny I, Laatsch H. Quinazolin-4-one derivatives from Streptomyces isolates. J Nat Prod. 2004;67:1131–4.

    Article  CAS  Google Scholar 

  29. Chen G, Gao H, Tang J, Huang Y, Chen Y, Wang Y, et al. Benzamides and quinazolines from a mangrove actinomycetes Streptomyces sp. (No. 061316) and their inhibiting caspase-3 catalytic activity in vitro. Chem Pharm Bull. 2011;59:447–51.

    Article  CAS  Google Scholar 

  30. Xue JH, Xu LX, Jiang Z-H, Wei X. Quinazoline alkaloids from Streptomyces michiganensis. Chem Nat Compd. 2012;48:839–41.

    Article  CAS  Google Scholar 

  31. Kornsakulkarn J, Saepua S, Srijomthong K, Rachtawee P, Thongpanchang C. Quinazolinone alkaloids from actinomycete Streptomyces sp. BCC 21795. Phytochem Lett. 2015;12:6–8.

    Article  CAS  Google Scholar 

  32. Boonlarppradab C, Suriyachadkun C, Supothina S, Laksanacharoen P. Amethysione and amethysamide, new metabolites from Streptosporangium amethystogenes BCC 27081. J Antibiot. 2016;69:459–63.

    Article  CAS  Google Scholar 

  33. Wu X, Liu Y, Sheng W, Sun J, Qin G. Chemical constituents of Isatis indigotica. Planta Med. 1997;63:55–57.

    Article  CAS  Google Scholar 

  34. MacroModel; Schrödinger, LLC: New York, NY, USA, 2019.

  35. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.

  36. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A–C, antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species. J Nat Prod. 2020;83:1295–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are in debt to Dr. Moriyuki Hamada at Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan, for acquiring the SEM image, and Prof. Y. Hikichi and Dr. A. Kanda at Kochi University for providing R. solanacearum SUPP1541. This work was supported by JSPS KAKENHI Grant Number 19K05848 to Y.I.. P388 cells were obtained from JCRB Cell Bank under an accession code JCRB0017 (Lot. 06252002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triningsih, D.W., Zhou, T., Fukaya, K. et al. Cyclic enaminones and a 4-quinazolinone from an unidentified actinomycete of the family Micromonosporaceae. J Antibiot 75, 610–618 (2022). https://doi.org/10.1038/s41429-022-00558-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00558-y

This article is cited by

Search

Quick links