Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antimicrobial polyketides from Magellan Seamount-derived fungus Talaromyces scorteus AS-242

Abstract

Two new nonadride derivatives, namely, talarodrides G and H (1 and 2), and one new depsidone derivative, botryorhodine K (3), together with a known nonadride analogue (4), were characterized from the Magellan Seamount-derived fungus Talaromyces scorteus AS-242. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometry data analysis. X-ray crystallographic analysis of compounds 1 and 3 confirmed their structures and absolute configurations, representing the first characterized crystal structure of a nonadride-type polyketide. The isolated compounds exhibited potent antimicrobial activities against the pathogenic bacterium MRSA and V. parahaemolyticus and pathogenic fungi C. gloeosporioides, F. oxysporum, and F. proliferatum, with MIC values ranging from 1 to 64 μg ml−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 2001;18:380–416.

    Article  CAS  PubMed  Google Scholar 

  2. Weng WY, Li RD, Zhang YX, Pan XF, Jiang SC, et al. Polyketides isolated from an endophyte Penicillium oxalicum 2021CDF-3 inhibit pancreatic tumor growth. Front. Microbiol. 2022;13:1–9.

    Article  Google Scholar 

  3. Liu T, Zhang SY, Li ZL, Wang Y, Chen ZX, et al. A new polyketide, penicillolide from the marinederived fungus Penicillium sacculum. Nat. Prod. Res. 2016;30:1025–9.

    Article  CAS  PubMed  Google Scholar 

  4. Mahmoud MM, Abdel-Razek AS, Hamed A, Soliman HSM, Ponomareva LV, et al. RF-3192C and other polyketides from the marine endophytic Aspergillus niger ASSB4: structure assignment and bioactivity investigation. Med. Chem. Res. 2021;30:647–54.

    Article  CAS  Google Scholar 

  5. Lai CR, Chen JY, Liu J, Tian DM, Lan DH, et al. New polyketides from a hydrothermal vent sediment fungus Trichoderma sp. JWM29-10-1 and their antimicrobial effects. Mar. Drugs. 2022;20:720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun Y, Tian L, Huang J, Ma HY, Zheng Z, et al. Trichodermatides A−D, Novel polyketides from the marine-derived fungus Trichoderma reesei. Org. Lett. 2008;10:393–6.

    Article  CAS  PubMed  Google Scholar 

  7. Wei H, Itoh T, Kotoku N, Kobayashi M. Shimalactiones neuritogenic polyketides from a marine-derived fungus Emericella variecolor GF10. Heterocycles. 2006;68:111–23.

    Article  CAS  Google Scholar 

  8. Suzuki T, Ariefta NR, Koseki T, Furuno H, Kwon E, et al. New polyketides, paralactonic acids A–E produced by Paraconiothyrium sp. SW-B-1, an endophytic fungus associated with a seaweed, Chondrus ocellatus Holmes. Fitoterapia. 2019;132:75–81.

    Article  CAS  PubMed  Google Scholar 

  9. Lei H, Lei J, Zhou XF, Hu M, Niu H, et al. Cytotoxic polyketides from the marine sponge-derived fungus Pestalotiopsis heterocornis XWS03F09. Molecules. 2019;24:2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, et al. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org. Lett. 2009;11:5014–7.

    Article  CAS  PubMed  Google Scholar 

  11. Niu SW, Tang XX, Fan ZW, Xia JM, Xie CL, Yang XW, et al. Polyketides from the marine-derived fungus Fusarium solani H918. Mar. Drugs. 2019;17:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu YF, Zhang YH, Shao CL, Cao F, Wang CY. Microketides A and B, polyketides from a gorgonian-derived Microsphaeropsis sp. Fungus. J. Nat. Prod. 2020;83:1300–4.

    Article  CAS  PubMed  Google Scholar 

  13. Gou XS, Tian DM, Wei JH, Ma YH, Zhang YX, et al. New drimane sesquiterpenes and polyketides from marine-derived fungus Penicillium sp. TW58-16 and their anti-inflammatory and α-Glucosidase inhibitory effect. Mar. Drugs. 2021;19:416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang YH, Du HF, Cao WB, Li W, Cao F, Wang CY. Anti-inflammatory polyketides from the marine-derived fungus Eutypella scoparia. Mar. Drugs. 2022;20:486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang JF, Zhao BB, Yi YT, Zhang W, Wu X, Zhang LR, et al. Mycoepoxydiene, a fungal polyketide inhibits MCF-7 cells through simultaneously targeting p53 and NF-kB pathways. Biochem. Pharmacol. 2012;84:891–899.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang DH, Li XG, Kang JS, Choi HD, Jung JH, Son BW. Redoxcitrinin, a biogenetic precursor of citrinin from marine isolate of Fungus Penicillium sp. J. Microbiol. Biotechnol. 2007;17:865–867.

    CAS  PubMed  Google Scholar 

  17. Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, et al. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J. Antibiot. 2013;66:219–23.

    Article  CAS  Google Scholar 

  18. Niu SW, Liu QM, Xia JM, Xie CL, Luo ZH, et al. Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent antifood allergic activities. J. Agric. Food Chem. 2018;66:1369–76.

    Article  CAS  PubMed  Google Scholar 

  19. Meng LH, Li XM, Zhang FZ, Wang YN, Wang BG, Talascortenes A−G. Highly oxygenated diterpenoid acids from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. J. Nat. Prod. 2020;83:2528–36.

    Article  CAS  PubMed  Google Scholar 

  20. Li HL, Li XM, Li X, Wang CY, Liu H, et al. Antioxidant hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J. Nat. Prod. 2017;80:162–68.

    Article  PubMed  Google Scholar 

  21. Zhang FZ, Li XM, Yang SQ, Meng LH, Wang BG. Thiocladospolides A−D, 12-Membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and Structure Revision of Pandangolide 3. J. Nat. Prod. 2019;82:1535–41.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Li XM, Yang SQ, Zhang FZ, Wang BG, Li HL, et al. Sesquiterpene and sorbicillinoid glycosides from the endophytic Fungus Trichoderma longibrachiatum EN-586 derived from the marine red Alga Laurencia obtusa. Mar. Drugs. 2022;20:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li YH, Yang SQ, Li XM, Li X, Wang BG, Li HL. Cyclopiumolides A and B, unusual 13-membered macrolides from the deep sea-sourced fungus Penicillium cyclopium SD-413 with antiproliferative activities. Bioorg. Chem. 2022;128:106104.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Sun CX, Huang LY, Zhang X, Zhang G,J, et al. Talarodrides A−F, nonadrides from the antarctic sponge-derived Fungus Talaromyces sp. HDN1820200. J. Nat. Prod. 2021;84:3011–3019.

    Article  CAS  PubMed  Google Scholar 

  25. Spencer P, Agnelli F, Sulikowski GA. Investigations into the production and interconversion of phomoidrides A−D. Org. Lett. 2001;3:1443–1445.

    Article  CAS  PubMed  Google Scholar 

  26. Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015;80:12526–34.

    Article  CAS  PubMed  Google Scholar 

  27. Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C. Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry. 2010;71:110–16.

    Article  CAS  PubMed  Google Scholar 

  28. Crystallographic data of compounds 1 and 3 have been deposited in the Cambridge Crystallographic Data Centre as CCDC 2162966 (for 1), and CCDC 2162965 (for 3). These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/MyStructures/ (or from the CCDC, 12 Union Road, Cambridge CB21EZ, U.K.; fax: + 44-1223-336-033; email: hello@ccdc.cam.ac.uk).

  29. Sheldrick GM, SADABS, Software for Empirical Absorption Correction; University of Gottingen: Gottingen, Germany, 1996.

  30. Sheldrick GM, SHELXL, Structure Determination Software Programs; Bruker Analytical X-ray System Inc. Madison, WI, USA, 1997.

  31. Sheldrick GM, SHELXL, Program for the Refinement of Crystal Structures; University of Gottingen: Gottingen, Germany, 2014.

  32. Parsons S, Flack HD, Wagner T. Acta. Crystallogr B. Use of intensity quotients and differences in absolute structure refinement. Struct. Sci. Cryst. Eng. Mater. 2013;B69:249–59.

    Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford, UK, 2013.

  34. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008;3:1494–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41976090 and 42176115), the Natural Science Foundation of Jiangsu Province (BK20201211), and the Senior User Project of RV KEXUE (KEXUE2020GZ02). B.-G.W. acknowledges the support of the Oceanographic Data Center at IOCAS (for CPU time) and the RV KEXUE of the National Major Science and Technology Infrastructure from the Chinese Academy of Sciences (for sampling).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin-Gui Wang or Ling-Hong Meng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ying, Z., Li, XM. et al. Antimicrobial polyketides from Magellan Seamount-derived fungus Talaromyces scorteus AS-242. J Antibiot 76, 699–705 (2023). https://doi.org/10.1038/s41429-023-00664-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00664-5

Search

Quick links