Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actinopolymorphols E and F, pyrazine alkaloids from a marine sediment-derived bacterium Streptomyces sp

Abstract

HPLC-UV-guided fractionation of crude extract from the marine sediment-derived bacterium Streptomyces sp. CNP-944 has yielded two new pyrazine alkaloids, actinopolymorphols E and F (1 and 2), in addition to the previously reported biosynthetic product, actinopolymorphol G (3), and the known actinopolymorphol D (4). The chemical structures of 13 were determined based on the interpretation of the 1D, 2D NMR, and MS spectroscopic data. Compound 2 displayed weak antibacterial activities against Kocuria rhizophila, Bacillus subtilis, and Staphylococcus aureus with minimum inhibitory concentration (MIC) values of 16, 64, and 64 μg ml−1, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive compounds isolated from marine-derived microbes in China: 2009-18. Mar Drugs. 2019;17.6:339.

    Article  Google Scholar 

  2. Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Zhang L. Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol. 2003;62.5:446–58.

    Article  Google Scholar 

  3. Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M, Shin-ya K. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ Microbiol. 2011;13:391–403.

    Article  CAS  Google Scholar 

  4. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362–413.

    Article  CAS  Google Scholar 

  5. Mincer TJ, Jensen PR, Kauffman CA, Fenical W. Appl Environ Microbiol. 2002;68:5005–11.

    Article  CAS  Google Scholar 

  6. Anandan R, Dharumadurai D, Manogaran GP. An introduction to actinobacteria. Actinobacteria—Basic Biotechnol Appl. 2016;11:3–37.

    Google Scholar 

  7. Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. PNAS . 2001;98:12215–20.

    Article  Google Scholar 

  8. Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: source of new innovations in antibiotic discovery. J Med Microbiol. 2020;69:1040–48.

    Article  CAS  Google Scholar 

  9. Ayswaria R, Vasu V, Krishna R. Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol. 2020;46:750–8.

    Article  CAS  Google Scholar 

  10. Lee L-H, Goh B-H, Chan K-G. Edoitorial: Antinobacteria: prolific producers of bioactive metabolites. Front Microbiol. 2020;11:1612.

    Article  Google Scholar 

  11. Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: progress and prospects. Microbiol Res. 2021;246:126708.

    Article  CAS  Google Scholar 

  12. Wu XA, Zhao YM, Yu NJ. A novel analgesic pyrazine derivative from the leaves of Croton tiglium L. J Asian Nat Prod Res. 2007;9.5:437–41.

    Article  Google Scholar 

  13. Durán R, Zubía E, Ortega MJ, Naranjo S, Salvá J. Novel alkaloids from the red ascidian Botryllus leachi. Tetrahedron. 1999;55:13225–32.

    Article  Google Scholar 

  14. Wyatt MA, Magarvey NA. Optimizing dimodular nonribosomal peptide synthetases and natural dipeptides in an Escherichia coli heterologous host. Biochem Cell Biol. 2013;91:203–8.

    Article  CAS  Google Scholar 

  15. Wyatt MA, Mok MCY, Junop M, Magarvey NA. Heterologous expression and structural characterisation of a pyrazinone natural product assembly line. Chem Bio Chem. 2012;13:2048–15.

    Article  Google Scholar 

  16. Romero CA, Grkovic T, Han J, Zhang L, French JRJ, Kurtbӧke DI, Quinn RJ. NMR fingerprints, an integrated approach to uncover the unique components of the drug-like natural product metabolome of termite gut- associated Streptomyces species. RSC Adv. 2015;5:104524–34.

    Article  CAS  Google Scholar 

  17. Ohta A, Okuwaki Y, Komaru T, Hisatome M, Yoshida Y, Aizawa J, Nakano Y, Shibata H, Miyazaki T, Watanabe T. Catalytic hydrogenation of 2,5-dialkylpyrazines and 3,6-dialkyl-2-hydroxypyarazines. Heterocycles. 1987;26:2691–701.

    Article  CAS  Google Scholar 

  18. Rojas N, Grillasca Y, Acosta A, Audelo I, Mora GG. A new method for the synthesis of symmetrical disubstituted pyrazines. J Heterocycl Chem. 2013;50:982–4.

    Article  CAS  Google Scholar 

  19. Ohta A, Akita Y, Nakane Y. Conversion of 2,5-diphenyl- and 2,5-dibenzyl-pyrazines to 2,5-diketopiperazines. Chem Pharm Bull. 1979;27:2980–7.

    Article  CAS  Google Scholar 

  20. Daw P, Kumar A, Espinoas-Jalapa NA, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018;8:7737–41.

    Article  Google Scholar 

  21. Murray KE, Shipton J, Whitfield FB. 2-Methoxypyrazines and the flavour of green peas (Pisum sativum). Chem Ind. 1970;4:897–8.

    Google Scholar 

  22. Chen T-B, Reineccius GA, Bjorklund JA, Leete E. Biosynthesis of 2-methoxy-3-isopropylpyrazine in Pseudomonas perolens. J Agric Food Chem. 1991;39:1009–12.

    Article  Google Scholar 

  23. MacDonald JC. Biosynthesis of pulcherriminic acid. Biochem J. 1965;96:533–8.

    Article  CAS  Google Scholar 

  24. MacDonald JC. Biosynthesis of hydroxyaspergillic acid. J Biol Chem. 1962;237:1977–81.

    Article  CAS  Google Scholar 

  25. Maha A, Rukachaisirikul V, Saithong S, Phongpaichit S, Poonsuwan W, Sakayaroj J, Hannongbua S. Terezine derivatives from the fungus Phoma herbarum PSU-H256. Phytochemistry. 2016;122:223–9.

    Article  CAS  Google Scholar 

  26. Mortzfeld FB, Hashem C, Vranková K, Winkler M, Rudroff F. Pyrazines: synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol J. 2020;15:2000064.

    Article  CAS  Google Scholar 

  27. Shimoda M, Nakada Y, Nakashima M, Osajima Y. Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil. J Agric Food Chem. 1997;45:3193–6.

    Article  CAS  Google Scholar 

  28. Opletalová V, Hartl J, Patel A, Palat K Jr, Buchta V. Ring substituted 3-phenyl-1-(2-pyrazinyl)−2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. ΙL Farm. 2002;57:135–44.

    Article  Google Scholar 

  29. Huang S-X, Powell E, Rajski SR, Zhao L-X, Jiang C-L, Duan Y, Xu W, Shen B. Discovery and total synthesis of a new estrogen receptor heterodimerizing actinopolymorphol A from Actinoppolymorpha rutilus. Org Lett. 2010;12:3525–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea grant funded by the Korean Government (Ministry of Science and ICT; no. 2021R1A4A2001251 to S-JN) and in part by the project titled “Development of Potential Antibiotic Compounds Using Polar Organism Resources” (15250103, KOPRI grant PM21030 to S-SC) funded by the Ministry of Oceans and Fisheries, Korea. Isolation of the bacterium strain Streptomyces sp. CNP-944 was a result of financial support from the US National Cancer Institute (grant CA R37044848 to WF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Jip Nam or William Fenical.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Hillman, P.F., Lee, J.Y. et al. Actinopolymorphols E and F, pyrazine alkaloids from a marine sediment-derived bacterium Streptomyces sp. J Antibiot 75, 619–625 (2022). https://doi.org/10.1038/s41429-022-00562-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00562-2

Search

Quick links