Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic studies for destruxins and biological evaluation for osteoclast-like multinucleated cells: a review

Abstract

Synthesis of various destruxin analogs was accomplished using Shiina’s macrolactonization as a key reaction. Combinatorial synthesis of cyclization precursors using solid-phase peptide synthesis and macrolactonization in solution were successful. In the synthesis of destruxin E and its analogs, the hydroxyacid–proline (HA1–Pro2) dipeptide with an acetonide-protected diol moiety was synthesized in an asymmetric manner, and the protected diol was converted to an epoxide after macrocyclization. Destruxin E was synthesized on a gram scale using solution-phase synthesis. The structure-activity relationships of destruxins were elucidated through biological evaluation of synthetic destruxins A, B, and E and their analogs for morphological changes in osteoclast-like multinucleated cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Fig. 4

Similar content being viewed by others

References

  1. Kodaira Y. Studies on new toxic substances to insects, destruxin A and B, produced by Oospora destructor: Part I. Isolation and purification of destruxin A and B. Agr. Biol Chem. 1962;26:36–42.

    CAS  Google Scholar 

  2. Liu BL, Tzeng YM. Development and applications of destruxins: A review. Biotechnol Adv. 2012;30:1242–54.

    Article  CAS  Google Scholar 

  3. Fan J, Chen X, Hu Q. Effects of destruxin A on hemocytes morphology of Bombyx mori. J Integr Agric. 2013;12:1042–8.

    Article  Google Scholar 

  4. Zhang H, Hu W, Xiao M, Ou S, Hu Q. Destruxin A induces and binds HSPs in Bombyx mori Bm12 Cells. J Agric Food Chem. 2017;65:9849–53.

    Article  CAS  Google Scholar 

  5. Shakeel M, Xu X, Xu J, Li S, Yu J, Zhou X, Xu X, Hu Q, Yu X, Jin F. Genome-wide identification of destruxin A-responsive immunity-related MicroRNAs in Diamondback Moth, Plutella xylostella. Front Immunol. 2018;9:185.

    Article  Google Scholar 

  6. Wang J, Weng Q, Hu Q. Effects of destruxin A on silkworm’s immunophilins. Toxins. 2019;11:349.

    Article  CAS  Google Scholar 

  7. Huynh TT, Rao YK, Lee WH, Chen HA, Le TDQ, Tzeng DTW, Wanga LS, Wui ATH, Lin YF, Tzeng YM, Yeh CT. Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/β-catenin signaling pathway and epithelial–mesenchymal transition. Toxicol Vitr. 2014;28:552–61.

    Article  CAS  Google Scholar 

  8. Kao MC, Rao YK, Hsieh YW, Weng H, Lu TL, Tzeng DTW, Liu JJ, Lin CJ, Lai CH, Tzeng WM. A cyclohexadepsipeptide from entomogenous fungi Metarhizium anisopliae inhibits the Helicobacter pylori induced pathogenesis through attenuation of vacuolating cytotoxin-A activity. Process Biochem. 2015;50:134–9.

    Article  CAS  Google Scholar 

  9. Wu SY, Huang YJ, Tzeng YM, Huang CYF, Hsiao M, Wu ATH, Huang TH. Destruxin B suppresses drug-resistant colon tumorigenesis and stemness is associated with the upregulation of miR-214 and downregulation of mTOR/β-Catenin Pathway. Cancers. 2018;10:353.

    Article  CAS  Google Scholar 

  10. Gupta S, Roberts DW, Renwick JAA. Insecticidal Cyclodepsipeptides from Metarhizium anisopliae. J Chem Soc Perkin Trans I. 1989;2347–57.

  11. Dornetshuber-Fleiss R, Heffeter P, Mohr T, Hazemi P, Kryeziu K, Seger C, Berger W, Lemmens-Gruber R. Destruxins: Fungal-derived cyclohexadepsipeptides with multifaceted anticancer and antiangiogenic activities. Biochem Pharm. 2013;86:361–77.

    Article  CAS  Google Scholar 

  12. Vázquez MJ, Albarrán MI, Espada A, Rivera-Sagredo A, Díez E, Hueso-Rodríguez JA. A new destruxin as inhibitors of vacuolar-type H+-ATPase of Saccharomyces cerevisiae. Chem Biodivers. 2005;2:123–8.

    Article  Google Scholar 

  13. Nakagawa H, Takami M, Udagawa N, Sawae Y, Suda K, Sasaki T, Takahashi N, Wachi M, Nagai K, Woo JT. Destruxins, cyclodepsipeptides, block the formation of actin rings and prominent clear zones and ruffled borders in osteoclasts. Bone. 2003;33:443–55.

    Article  CAS  Google Scholar 

  14. Woo JT, Yonezawa T, Cha BY, Teruya T, Nagai K. Pharmacological topics of bone metabolism: antiresorptive microbial compounds that inhibit osteoclast differentiation, function, and survival. J Pharm Sci. 2008;106:547–54.

    Article  CAS  Google Scholar 

  15. Engstrom GW, DeLance JV, Richard JL, Baetz AL. Purification and characterization of roseotoxin B, a toxic cyclodepsipeptide from Trichothecium roseum. J Agr Food Chem. 1975;23:224–53.

    Article  Google Scholar 

  16. Tsunoo A, Kamijo M, Taketomo N. Roseocardin, a novel cardiotonic cyclodepsipeptide from Trichothecium roseum TT103. J Antibiot. 1997;50:1007–13.

    Article  CAS  Google Scholar 

  17. Ravindra G, Ranganayaki RS, Raghothama S, Srinivasan MC, Gilardi RD, Karle IL, Balaram P. Two novel hexadepsipeptides with several modified amino acid residues isolated from the fungus isaria. Chem Divers. 2004;1:489–504.

    CAS  Google Scholar 

  18. Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, Balaram P. Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J Nat Prod. 2007;70:715–29.

    Article  CAS  Google Scholar 

  19. Zhang AH, Wang XQ, Han WB, Sun Y, Guo Y, Wu Q, Ge HM, Song YC, Ng SW, Xu Q, Tan RX. Discovery of a new class of immunosuppressants from Trichothecium roseum co-inspired by cross-Kingdom similarity in innate immunity and pharmacophore motif. Chem Asian J. 2013;8:3101–7.

    Article  CAS  Google Scholar 

  20. Zhou Ym-M, Ju GL, Xiao L, Zhang XF, Du FY. Cyclodepsipeptides and sesquiterpenes from marine-derived fungus Trichothecium roseum and their biological functions. Mar Drugs. 2018;16:519.

    Article  CAS  Google Scholar 

  21. Liu Z, Sun Y, Tang M, Sun Q, Wang A, Hao Y, Wang Y, Pei Y. Trichodestruxins A−D: cytotoxic cyclodepsipeptides from the endophytic fungus Trichoderma harzianum. J Nat Prod. 2020;83:3635–41.

    Article  CAS  Google Scholar 

  22. Zhou T, Katsuragawa M, Xing T, Fukaya K, Okuda T, Tokiwa T, Tashiro E, Imoto M, Oku N, Urabe D, Igarashi Y. Cyclopeptides from the Mushroom Pathogen Fungus Cladobotryum varium. J Nat Prod. 2021;84:327–38.

    Article  CAS  Google Scholar 

  23. Gupta S, Roberts DW, Renwick JAA. Molecular conformation of Destruxin A. Tetrahedron Lett. 1989;30:4189–92.

    Article  CAS  Google Scholar 

  24. Steiner JR, Barnes CL. Crystal and molecular structure of Destruxin B. Int J Pept Protein Res. 1988;31:212–9.

    Article  CAS  Google Scholar 

  25. Springer JP, Cole RJ, Dorner JW, Cox RH, Richard JL, Barnes CL, van der Helm D. Structure and conformation of roseotoxin B. J Am Chem Soc. 1984;106:2388–92.

    Article  CAS  Google Scholar 

  26. Snyder JP. Probable unimportance of intramolecular hydrogen bonds for determining the secondary structure of cyclic hexapeptides. roseotoxin B. J Am Chem Soc. 1984;106:2393–2400.

    Article  CAS  Google Scholar 

  27. Du FU, Mándi A, Li XM, Meng LH, Kurtán T, Wang BG. Experimental and computational analysis of the solution and solid-state conformations of hexadepsipeptides from Beauveria feline. Chin J Chem. 2022;40:378–84.

    Article  CAS  Google Scholar 

  28. Ward DE, Lazny R, Pedras MSC. Synthesis of the host-selective phytotoxin destruxin B. Avoiding diketopiperazine formation from an N-Methyl amino acid dipeptide by use of the Boc-Hydrazide Derivative. Tetrahedron Lett. 1997;38:339–42.

    Article  CAS  Google Scholar 

  29. Ward DE, Gai Y, Lazny R, Pedras MSC. Probing host-selective phytotoxicity: synthesis of destruxin B and several natural analogues. J Org Chem. 2001;66:7832–40.

    Article  CAS  Google Scholar 

  30. Calmes M, Cavelier-Frontin F, Jacquier R, Mercadier JN, Sabil S, Verducci J, Qciot JM, Vey A. Synthesis and biological activity of a destruxin analogue: D-Lac-6 destruxin E. Int J Pept Protein Res. 1993;41:528–35.

    Article  CAS  Google Scholar 

  31. Cavelier F, Jacquier R, Mercadier JL, Verducci J, Traris M, Vey A. Destruxin analogs: variations of the α-hydroxy acid side chain. J Pept Res. 1997;50:94–101.

    Article  CAS  Google Scholar 

  32. Ast T, Barron E, Kinne L, Schmidt M, Germeroth L, Simmons K, Wenschuh H. Synthesis and biological evaluation of destruxin A and related analogs. J Pept Res. 2001;58:1–11.

    Article  CAS  Google Scholar 

  33. Yoshida M, Takeuchi H, Ishida Y, Yashiroda Y, Yoshida M, Takagi M, Shin-ya K, Doi T. Synthesis, structure determination, and biological evaluation of destruxin E. Org Lett. 2010;12:3792–5.

    Article  CAS  Google Scholar 

  34. Yoshida M, Sato H, Ishida Y, Nakagawa H, Doi T. Scalable solution-phase synthesis of the biologically active cyclodepsipeptide destruxin E, a potent negative regulator of osteoclast morphology. J Org Chem. 2014;79:296–306.

    Article  CAS  Google Scholar 

  35. Parsons JG, Sheehan CS, Wu Z, James IW, Bray AM. A review of solid-phase organic synthesis on SynPhaseTM lanterns and SynPhaseTM crowns. Methods Enzymol. 2003;369:39–74.

    Article  CAS  Google Scholar 

  36. Shiina I. An adventurous synthetic journey with MNBA from its reaction chemistry to the total synthesis of natural products. Bull Chem Soc Jpn. 2014;87:196–233.

    Article  CAS  Google Scholar 

  37. Sato H, Yoshida M, Murase H, Nakagawa H, Doi T. Combinatorial solid-phase synthesis and biological evaluation of cyclodepsipeptide destruxin B as a negative regulator for osteoclast morphology. ACS Comb Sci. 2016;18:590–5.

    Article  CAS  Google Scholar 

  38. Yoshida M, Ishida Y, Adachi K, Murase H, Nakagawa H, Doi T. Solid-phase combinatorial synthesis and biological evaluation of destruxin E analogues. Chem Eur J. 2015;21:18417–30.

    Article  CAS  Google Scholar 

  39. Yoshida M, Adachi K, Murase H, Nakagawa H, Doi T. Parallel synthesis and biological evaluation of destruxin E analogs modified with a side chain in the α-Hydroxycarboxylic Acid Moiety. Eur J Org Chem. 2019;2019:1669–76.

    Article  CAS  Google Scholar 

  40. Yoshida M. Combinatorial synthesis and biological evaluation of destruxins. Chem Pharm Bull. 2019;67:1023–9.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by JSPS KAKENHI (Grant No. JP26282208, JP23710264 and JP15H05837), the Platform Project for Supporting Drug Discovery and Life Science Research from AMED (Grand No. JP21am0101095 and JP21am0101100), the Naito Foundation, and Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Doi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M., Nakagawa, H. & Doi, T. Synthetic studies for destruxins and biological evaluation for osteoclast-like multinucleated cells: a review. J Antibiot 75, 420–431 (2022). https://doi.org/10.1038/s41429-022-00540-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00540-8

Search

Quick links