Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fosfomycin and nitrofurantoin: classic antibiotics and perspectives

Abstract

Antibiotics are essential molecules for the treatment and prophylaxis of many infectious diseases. However, drugs that combat microbial infections can become a human health threat due to their high and often indiscriminate consumption, considered one of the factors of antimicrobial resistance (AMR) emergence. The AMR crisis, the decrease in new drug development by the pharmaceutical industry, and reduced economic incentives for research have all reduced the options for treating infections, and new strategies are necessary, including the return of some traditional but “forgotten” antibiotics. However, prescriptions for these older drugs including nitrofurantoin and oral fosfomycin, have been based on the results of pioneer studies, and the limited knowledge generated 50–70 years ago may not be enough. To avoid harming patients and further increasing multidrug resistance, systematic evaluation is required, mainly for the drugs prescribed for community-acquired infections, such as urinary tract infections (UTI). Therefore, this review has the objective of reporting the use of two classic drugs from the nitrofuran and phosphonic acid classes for UTI control nowadays. Furthermore, we also explore new approaches used for these antibiotics, including new combination regimes for spectral amplification, and the prospects for reducing bacterial resistance in the fight against bacteria responsible for UTI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resistance. 2018;11:1645.

    Article  CAS  Google Scholar 

  2. Chuc NTK, Hoa NP, Hoa NQ, Nguyen NTT, Loan HT, Toan TK, et al. Antibiotic sales in rural and urban pharmacies in northern Vietnam: an observational study. BMC Pharmacol Toxicol. 2014;15:6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Horumpende PG, Sonda TB, van Zwetselaar M, Antony ML, Tenu FF, Mwanziva CE, et al. Prescription and non-prescription antibiotic dispensing practices in part I and part II pharmacies in Moshi Municipality, Kilimanjaro Region in Tanzania: a simulated clients approach. PLoS ONE. 2018;13:e0207465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. WHO. Worldwide country situation analysis: response to antimicrobial resistance: summary. World Health Organization, 2015.

  5. Theuretzbacher U, Van Bambeke F, Cantón R, Giske CG, Mouton JW, Nation RL, et al. Reviving old antibiotics. J Antimicrob Chemother. 2015;70:2177–81.

    Article  CAS  PubMed  Google Scholar 

  6. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.

    Article  PubMed  Google Scholar 

  7. Zhou A, Kang TM, Yuan J, Beppler C, Nguyen C, Mao Z, et al. Synergistic interactions of vancomycin with different antibiotics against Escherichia coli: trimethoprim and nitrofurantoin display strong synergies with vancomycin against wild-type E. coli. Antimicrobial Agents Chemother. 2015;59:276–81.

    Article  CAS  Google Scholar 

  8. Baker SJ, Payne DJ, Rappuoli R, De Gregorio E. Technologies to address antimicrobial resistance. Proc Natl Acad Sci USA. 2018;115:12887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ocampo PS, Lázár V, Papp B, Arnoldini M, Zur Wiesch PA, Busa-Fekete R, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrobial Agents Chemother. 2014;58:4573–82.

    Article  CAS  Google Scholar 

  10. Qiang X-H, Yu T-O, Li Y-N, Zhou L-X. Prognosis risk of urosepsis in critical care medicine: a prospective observational study. BioMed Res. Int. 2016; 2016.

  11. Ramlakhan S, Singh V, Stone J, Ramtahal A. Clinical options for the treatment of urinary tract infections in children. Clin Med Insights: Pediatr. 2014;8:CMPed–S8100.

    Google Scholar 

  12. Xu X, Xu L, Yuan G, Wang Y, Qu Y, Zhou M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci Rep. 2018;8:7237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yilancioglu K, Unlu O. Multidrug resistance stimulated antagonistic antibiotic interactions. Rom J Leg Med. 2017;25:331–6.

    Google Scholar 

  14. Munita JM, Arias CA. Mechanisms of antibiotic resistance. VMBF-0016-2015 Microbiol Spectr 4, https://doi.org/10.1128/microbiolspec, 2016.

  15. Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, et al. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science. 1969;166:122–3.

    Article  CAS  PubMed  Google Scholar 

  16. Popovic M, Steinort D, Pillai S, Joukhadar C. Fosfomycin: an old, new friend? Eur J Clin Microbiol Infect Dis. 2010;29:127–42.

    Article  CAS  PubMed  Google Scholar 

  17. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev. 2016;29:321–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khawaja AR, Khan FB, Dar TI, Bhat AH, Wani MS, Wazir BS. Fosfomycin tromethamine. Antibiot Choice Female Patient. 2015;68:371–5.

    CAS  Google Scholar 

  19. Zhanel GG, Walkty AJ, Karlowsky JA. Fosfomycin: a first-line oral therapy for acute uncomplicated cystitis. Canad J Infect Dis Med Microbiol. 2016; 2016.

  20. Cao Y, Peng Q, Li S, Deng Z, Gao J. The intriguing biology and chemistry of fosfomycin: the only marketed phosphonate antibiotic. RSC Adv. 2019;9:42204–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Babiker A, Sanchez GV, Bhandary S, Bordon JM. Reply to “Nitrofurantoin, an excellente empiric choice for outpatient cystitis”. Antimicrobial Agents Chemother. 2016;60:7536.

    Article  CAS  Google Scholar 

  22. Cortes-Penfield NW, Trautner BW. Nitrofurantoin an excellent empiric choice for outpatient cystitis. Antimicrobial Agents Chemother. 2016;60:7535.

    Article  CAS  Google Scholar 

  23. Matthews PC, Barrett LK, Warren S, Stoesser N, Snelling M, Scarborough M, et al. Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study. BMC Infect Dis. 2016;16:556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hirsch EB, Raux BR, Zucchi PC, Kim Y, McCoy C, Kirby JE, et al. Activity of fosfomycin and comparison of several susceptibility testing methods against contemporary urine isolates. Int J Antimicrobial Agents. 2015;46:642–7.

    Article  CAS  Google Scholar 

  25. Ou LB, Nadeau L. Fosfomycin susceptibility in multidrug-resistant Enterobacteriaceae species and vancomycin-resistant enterococci urinary isolates. Can J Hospital Pharm. 2017;70:368.

    Google Scholar 

  26. WHO. Model list of essential medicines: 21st list 2019. World Health Organization, 2019.

  27. Díez-Aguilar M, Cantón R. New microbiological aspects of fosfomycin. Rev Española Quimioterapia. 2019;32:8.

    Google Scholar 

  28. Neuner EA, Sekeres J, Hall GS, van Duin D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother. 2012;56:5744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pullukcu H, Tasbakan M, Sipahi OR, Yamazhan T, Aydemir S, Ulusoy S. Fosfomycin in the treatment of extended spectrum beta-lactamase-producing Escherichia coli-related lower urinary tract infections. Int J Antimicrobial Agents. 2007;29:62–5.

    Article  CAS  Google Scholar 

  30. Zhanel GG, Zhanel MA, Karlowsky JA. Intravenous fosfomycin: an assessment of its potential for use in the treatment of systemic infections in Canada. Canad J Infect Dis Med Microbiol. 2018; 2018.

  31. Reffert JL, Smith WJ. Fosfomycin for the treatment of resistant Gram‐negative bacterial infections. Pharmacotherapy: J Hum Pharmacol Drug Ther. 2014;34:845–57.

    Article  CAS  Google Scholar 

  32. Walsh CC, McIntosh MP, Peleg AY, Kirkpatrick CM, Bergen PJ. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J Antimicrobial Chemother. 2015;70:3042–50.

    Article  CAS  Google Scholar 

  33. Dijkmans AC, Zacarías NVO, Burggraaf J, Mouton JW, Wilms E, van Nieuwkoop C, et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics. 2017;6:24.

    Article  PubMed Central  CAS  Google Scholar 

  34. Sultan A, Rizvi M, Khan F, Sami H, Shukla I, Khan HM. Increasing antimicrobial resistance among uropathogens: Is fosfomycin the answer? Urol Ann. 2015;7:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kahan FM, Kahan JS, Cassidy PJ, Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235:364–86.

    Article  CAS  PubMed  Google Scholar 

  36. Aiba H. Negative control of transcription by cAMP and cAMP receptor protein in Escherichia coli. Adv Biophys. 1986;21:193–204.

    Article  CAS  PubMed  Google Scholar 

  37. Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE. 2011;6:e20081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70:939–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Escalante A, Salinas Cervantes A, Gosset G, Bolivar F. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol. 2012;94:1483–94.

    Article  CAS  PubMed  Google Scholar 

  40. Merkel TJ, Nelson DM, Brauer CL, Kadner RJ. Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J Bacteriol. 1992;174:2763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verhamme DT, Postma PW, Crielaard W, Hellingwerf KJ. Cooperativity in signal transfer through the Uhp system of Escherichia coli. J Bacteriol. 2002;184:4205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang B, Gerhardt SG, Larson TJ. Action at a distance for glp repressor control of glpTQ transcription in Escherichia coli K12. Mol Microbiol. 2003;24:511–21.

    Article  CAS  Google Scholar 

  43. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008;32:149–67.

    Article  CAS  PubMed  Google Scholar 

  44. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32:168–207.

    Article  CAS  PubMed  Google Scholar 

  45. Eschenburg S, Priestman M, Schonbrunn E. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem. 2005;280:3757–63.

    Article  CAS  PubMed  Google Scholar 

  46. Petek M, Baebler S, Kuzman D, Rotter A, Podlesek Z, Gruden K, et al. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation. BMC Microbiol. 2010;10:159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kaye KS, Rice LB, Dane AL, Stus V, Sagan O, Fedosiuk E, et al. Fosfomycin for Injection (ZTI-01) versus piperacillin-tazobactam for the treatment of complicated urinary tract infection including acute pyelonephritis: ZEUS, A phase 2/3 randomized trial. Clin Infect Dis. 2019;69:2045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bundgaard H. Acid-catalyzed hydrolysis of fosfomycin and its implication in oral absorption of the drug. Int J Pharmaceut. 1980;6:1–9.

    Article  CAS  Google Scholar 

  49. Frossard M, Joukhadar C, Erovic BM, Dittrich P, Mrass PE, Van Houte M, et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrobial Agents Chemother. 2000;44:2728–32.

    Article  CAS  Google Scholar 

  50. Joukhadar C, Klein N, Dittrich P, Zeitlinger M, Geppert A, Skhirtladze K, et al. Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother. 2003;51:1247–52.

    Article  CAS  PubMed  Google Scholar 

  51. Matzi V, Lindenmann J, Porubsky C, Kugler SA, Maier A, Dittrich P, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother. 2010;65:995–8.

    Article  CAS  PubMed  Google Scholar 

  52. Muller O, Ruckert U, Walter W, Haag R, Sauer W. Fosfomycin concentrations in serum and bile. Infection. 1982;10:18–20.

    Article  CAS  PubMed  Google Scholar 

  53. Legat FJ, Maier A, Dittrich P, Zenahlik P, Kern T, Nuhsbaumer S, et al. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob Agents Chemother. 2003;47:371–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sauermann R, Karch R, Langenberger H, Kettenbach J, Mayer-Helm B, Petsch M, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother. 2005;49:4448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schintler MV, Traunmüller F, Metzler J, Kreuzwirt G, Spendel S, Mauric O, et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64:574–8.

    Article  CAS  PubMed  Google Scholar 

  56. Pfausler B, Spiss H, Dittrich P, Zeitlinger M, Schmutzhard E, Joukhadar C. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53:848–52.

    Article  CAS  PubMed  Google Scholar 

  57. Fedrigo NH, Mazucheli J, Albiero J, Shinohara DR, Lodi FG, dos Santos Machado AC et al. Pharmacodynamic evaluation of fosfomycin against Escherichia coli and Klebsiella spp. from urinary tract infections and the influence of pH on fosfomycin activities. Antimicrob Agents Chemother. 2017; 61.

  58. Zykov IN, Samuelsen O, Jakobsen L, Smabrekke L, Andersson DI, Sundsfjord A et al. Pharmacokinetics and pharmacodynamics of fosfomycin and its activity against extended-spectrum-beta-lactamase-, plasmid-mediated AmpC-, and carbapenemase-producing Escherichia coli in a murine urinary tract infection model. Antimicrob Agents Chemother. 2018; 62.

  59. Valgimigli M, Patialiakas A, Thury A, McFadden E, Colangelo S, Campo G, et al. Zotarolimus-eluting versus bare-metal stents in uncertain drug-eluting stent candidates. J Am Coll Cardiol. 2015;65:805–15.

    Article  CAS  PubMed  Google Scholar 

  60. Shorr AF, Pogue JM, Mohr JF. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections. Expert Rev Anti-Infect Ther. 2017;15:935–45.

    Article  CAS  PubMed  Google Scholar 

  61. Burgos RM, Rodvold KA. ZTI-01 (fosfomycin for injection) in the treatment of hospitalized patients with complicated urinary tract infections. Future Microbiol. 2019;14:461–75.

    Article  CAS  PubMed  Google Scholar 

  62. Leelawattanachai P, Wattanavijitkul T, Paiboonvong T, Plongla R, Chatsuwan T, Usayaporn S, et al. Evaluation of intravenous fosfomycin disodium dosing regimens in critically ill patients for treatment of carbapenem-resistant enterobacterales infections using Monte Carlo simulation. Antibiotics. 2020;9:615.

    Article  CAS  PubMed Central  Google Scholar 

  63. Kanchanasurakit S, Santimaleeworagun W, McPherson Iii CE, Piriyachananusorn N, Boonsong B, Katwilat P, et al. Fosfomycin dosing regimens based on Monte Carlo Simulation for treated carbapenem-resistant Enterobacteriaceae infection. Infect Chemother. 2020;52:516.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Blass B. Nitrofurantoin: a surprisingly successful drug. Basic principles of drug discovery and development. Elsevier, 2015.

  65. Greener M. Modified-release nitrofurantoin in uncomplicated urinary tract infection. Nurse Prescribing. 2011;9:19–24.

    Article  Google Scholar 

  66. Osborne NG. Macrodantin. J Gynecologic Surg. 1992;8:195–6.

    Article  Google Scholar 

  67. Gardiner BJ, Stewardson AJ, Abbott IJ, Peleg AY. Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Aust prescriber. 2019;42:14.

    Article  Google Scholar 

  68. McKinnell JA, Stollenwerk NS, Jung CW, Miller LG. Nitrofurantoin compares favorably to recommended agents as empirical treatment of uncomplicated urinary tract infections in a decision and cost analysis, vol. 86, 6th edn. Elsevier, 2011, pp. 480–8.

  69. Sadler S, Holmes M, Ren S, Holden S, Jha S, Thokala P. Cost-effectiveness of antibiotic treatment of uncomplicated urinary tract infection in women: a comparison of four antibiotics. Br J Gen Pract Open 2017; 1: bjgpopen17X101097.

  70. Munoz-Davila MJ. Role of old antibiotics in the era of antibiotic resistance. Highlighted nitrofurantoin for the treatment of lower urinary tract infections. Antibiotics. 2014;3:39–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Squadrito FJ, del Portal D. Nitrofurantoin. StatPearls [Internet]. StatPearls Publishing, 2018.

  72. Giske CG. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin Microbiol Infect. 2015;21:899–905.

    Article  CAS  PubMed  Google Scholar 

  73. Bryant DW, McCalla DR, Leeksma M, Laneuville P. Type I nitroreductases of Escherichia coli. Can J Microbiol. 1981;27:81–86.

    Article  CAS  PubMed  Google Scholar 

  74. Koder RL, Haynes CA, Rodgers ME, Rodgers DW, Miller AF. Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry. 2002;41:14197–205.

    Article  CAS  PubMed  Google Scholar 

  75. Minchin RF, Ho PC, Boyd MR. Reductive metabolism of nitrofurantoin by rat lung and liver in vitro. Biochem Pharmacol. 1986;35:575–80.

    Article  CAS  PubMed  Google Scholar 

  76. Roldan MD, Perez-Reinado E, Castillo F, Moreno-Vivian C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev. 2008;32:474–500.

    Article  CAS  PubMed  Google Scholar 

  77. Streker K, Freiberg C, Labischinski H, Hacker J, Ohlsen K. Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol. 2005;187:2249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Waller DG, Sampson T. Medical pharmacology and therapeutics E-Book. Elsevier Health Sciences, 2017.

  79. Wang J, Zhi C-P, Chen X-J, Guo Z-W, Liu W-L, Luo J, et al. Characterization of oqxAB in Escherichia coli isolates from animals, retail meat, and human patients in Guangzhou, China. Front Microbiol. 2017;8:1982.

    Article  PubMed  PubMed Central  Google Scholar 

  80. McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and implications for resistance development in common uropathogens. J Antimicrob Chemother. 1994;33:23–30.

    Article  CAS  PubMed  Google Scholar 

  81. Brown O, Seither R. Oxygen and redox-active drugs: shared toxicity sites. Fundam Appl Toxicol. 1983;3:209–14.

    Article  CAS  PubMed  Google Scholar 

  82. Lopez JM, Fortnagel P. Nitrofurantoin prompts the stringent response in Bacillus subtilis. J Gen Microbiol. 1981;126:491–6.

    CAS  PubMed  Google Scholar 

  83. Engleberg C, DiRita VJ, Dermody T. Schaechter’s mechanisms of microbial disease. Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  84. Copp JN, Mowday AM, Williams EM, Guise CP, Ashoorzadeh A, Sharrock AV, et al. Engineering a multifunctional nitroreductase for improved activation of prodrugs and PET probes for cancer gene therapy. Cell Chem Biol. 2017;24:391–403.

    Article  CAS  PubMed  Google Scholar 

  85. Nogueira JMdR, Souza LdF. Bacteriologia. Fundação Oswaldo Cruz/EPSJV, 2009.

  86. Watford S, Warrington SJ Bacterial DNA mutations. StatPearls. StatPearls Publishing, 2017.

  87. Griffiths AJF, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH. An introduction to genetic analysis. Macmillan, 2005.

  88. Osei Sekyere J. Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical enterobacteriaceae. Future Sci OA. 2018;4:FSO293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sandegren L, Lindqvist A, Kahlmeter G, Andersson DI. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J Antimicrobial Chemother. 2008;62:495–503.

    Article  CAS  Google Scholar 

  90. Karageorgopoulos DE, Wang R, Yu X-h FalagasME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2011;67:255–68.

    Article  PubMed  CAS  Google Scholar 

  91. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013;2:217–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Fillgrove KL, Pakhomova S, Schaab MR, Newcomer ME, Armstrong RN. Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry. 2007;46:8110–20.

    Article  CAS  PubMed  Google Scholar 

  93. Garcia P, Arca P, Evaristo, Suarez J. Product of fosC, a gene from Pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrob Agents Chemother. 1995;39:1569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nikolaidis I, Favini‐Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 2014;23:243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Castañeda-García A, Rodríguez-Rojas A, Guelfo JR, Blázquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol. 2009;191:6968–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Schweizer HP, Po C. Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. J Bacteriol. 1996;178:5215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J, Goebel W, et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA. 2002;99:431–6.

    Article  CAS  PubMed  Google Scholar 

  98. Scortti M, Lacharme-Lora L, Wagner M, Chico-Calero I, Losito P, Vázquez-Boland JA. Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro–in vivo paradox. Nat Med. 2006;12:515.

    Article  CAS  PubMed  Google Scholar 

  99. Horii T, Kimura T, Sato K, Shibayama K, Ohta M. Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob Agents Chemother. 1999;43:789–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry. 1996;35:4923–8.

    Article  CAS  PubMed  Google Scholar 

  101. Jiang S, Gilpin ME, Attia M, Ting Y-L, Berti PJ. Lyme disease enolpyruvyl-UDP-GlcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp. Biochemistry. 2011;50:2205–12.

    Article  CAS  PubMed  Google Scholar 

  102. Marquardt JL, Brown ED, Lane WS, Haley TM, Ichikawa Y, Wong C-H, et al. Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNAc enolpyruvoyl transferase by the antibiotic fosfomycin. Biochemistry. 1994;33:10646–51.

    Article  CAS  PubMed  Google Scholar 

  103. Rigsby RE, Fillgrove KL, Beihoffer LA, Armstrong RN. Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily. Methods Enzymol. 2005;401:367–79.

    Article  CAS  PubMed  Google Scholar 

  104. Bernat BA, Laughlin LT, Armstrong RN. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry. 1997;36:3050–5.

    Article  CAS  PubMed  Google Scholar 

  105. Chevereau G, Dravecká M, Batur T, Guvenek A, Ayhan DH, Toprak E, et al. Quantifying the determinants of evolutionary dynamics leading to drug resistance. PLoS Biol. 2015;13:e1002299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mo CY, Manning SA, Roggiani M, Culyba MJ, Samuels AN, Sniegowski PD, et al. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. MSphere. 2016;1:e00163–00116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vervoort J, Xavier BB, Stewardson A, Coenen S, Godycki-Cwirko M, Adriaenssens N, et al. An in vitro deletion in ribE encoding lumazine synthase contributes to nitrofurantoin resistance in Escherichia coli. Antimicrobial Agents Chemother. 2014;58:7225–33.

    Article  CAS  Google Scholar 

  108. Breeze AS, Obaseiki-Ebor EE. Mutations to nitrofurantoin and nitrofurazone resistance in Escherichia coli K12. Microbiology. 1983;129:99–103.

    Article  CAS  Google Scholar 

  109. Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, et al. Oxygen-insensitive nitroreductases: analysis of the roles ofnfsA and nfsB in development of resistance to 5-Nitrofuran derivatives in Escherichia coli. J Bacteriol. 1998;180:5529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Corbett MD, Corbett BR. Bioorganic chemistry of the arylhydroxylamine and nitrosoarene functional groups. Biodegradation of nitroaromatic compounds. Springer, 1995, pp 151–82.

  111. Erill I, Campoy S, Barbe J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev. 2007;31:637–56.

    Article  CAS  PubMed  Google Scholar 

  112. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810.

    Article  CAS  PubMed  Google Scholar 

  113. Maiques E, Úbeda C, Campoy S, Salvador N, Lasa Í, Novick RP, et al. β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol. 2006;188:2726–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schlacher K, Goodman MF. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol. 2007;8:587.

    Article  CAS  PubMed  Google Scholar 

  115. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta. 2009;1794:808–16.

    Article  CAS  PubMed  Google Scholar 

  116. Džidić S, Šušković J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technolo Biotechnol. 2008; 46.

  117. Fluit AC, Visser MR, Schmitz F-J. Molecular detection of antimicrobial resistance. Clin Microbiol Rev. 2001;14:836–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 2012;7:73–89.

    Article  CAS  PubMed  Google Scholar 

  119. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007;39:162–76.

    Article  CAS  PubMed  Google Scholar 

  120. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4:223–9.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ho P-L, Ng K-Y, Lo W-U, Law PY, Lai EL-Y, Wang Y, et al. Plasmid-mediated OqxAB is an important mechanism for nitrofurantoin resistance in Escherichia coli. Antimicrob Agents Chemother. 2016;60:537–43.

    Article  CAS  PubMed  Google Scholar 

  122. Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev. 2007;71:463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Szabo O, Kocsis B, Szabo N, Kristof K, Szabo D. Contribution of OqxAB efflux pump in selection of fluoroquinolone-resistant klebsiella pneumoniae. Canad J Infect Dis Med Microbiol. 2018; 2018.

  124. Zheng J-X, Lin Z-W, Sun X, Lin Y, et al. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7:1–11.

    PubMed  PubMed Central  Google Scholar 

  125. Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z, et al. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrobial Resistance Infect Control. 2019;8:44.

    Article  Google Scholar 

  126. Yuan L, Zhai Y-J, Wu H, Sun H-R, Wang Y-B, et al. Identification and prevalence of RND family multidrug efflux pump oqxAB genes in Enterococci isolates from swine manure in China. J Med Microbiol. 2018;67:733–9.

    Article  CAS  PubMed  Google Scholar 

  127. Wolska KI, Grzes K, KuRek A. Synergy between novel antimicrobials and conventional antibiotics or bacteriocins. Pol J Microbiol. 2012;61:95–104.

    Article  CAS  PubMed  Google Scholar 

  128. Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M et al. Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies. Antibiotics. 2020;9: 500.

  129. Flamm RK, Rhomberg PR, Lindley JM, Sweeney K, Ellis-Grosse EJ, Shortridge D. Evaluation of the bactericidal activity of fosfomycin in combination with selected antimicrobial comparison agents tested against gram-negative bacterial strains by using time-kill curves. Antimicrob Agents Chemotherapy. 2019; 63.

  130. Seok H, Choi JY, Wi YM, Park DW, Peck KR, Ko KS. Fosfomycin resistance in Escherichia coli isolates from South Korea and in vitro activity of fosfomycin alone and in combination with other antibiotics. Antibiotics. 2020;9:112.

    Article  CAS  PubMed Central  Google Scholar 

  131. Zhong Z-X, Cui Z-H, Li X-J, Tang T, Zheng Z-J, Ni W-N, et al. Nitrofurantoin combined with amikacin: a promising alternative strategy for combating MDR uropathogenic Escherichia coli. Front Cell Infect Microbiol. 2020;10:811.

    Article  Google Scholar 

  132. Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis. 2012;31:695–701.

    Article  CAS  PubMed  Google Scholar 

  133. Grossato A, Sartori R, Fontana R. Effect of non-beta-lactam antibiotics on penicillin-binding protein synthesis of enterococcus hirae ATCC 9790. J Antimicrob Chemother. 1991;27:263–71.

    Article  CAS  PubMed  Google Scholar 

  134. Avery LM, Sutherland CA, Nicolau DP. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant pseudomonas aeruginosa. J Med Microbiol. 2019;68:893–7.

    Article  CAS  PubMed  Google Scholar 

  135. Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M et al. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019; 63.

  136. Boyanova L. Susceptibility of anaerobes to fusidic acid and fosfomycin. Int J Antimicrob Agents. 2015;45:560–1.

    Article  CAS  PubMed  Google Scholar 

  137. Singkham-In U, Chatsuwan T. In vitro activities of carbapenems in combination with amikacin, colistin, or fosfomycin against carbapenem-resistant acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis. 2018;91:169–74.

    Article  CAS  PubMed  Google Scholar 

  138. Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant acinetobacter baumannii infections. Antimicrob Agents Chemother. 2014;58:5598–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yamada S, Hyo Y, Ohmori S, Ohuchi M. Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of Pseudomonas aeruginosa. Chemotherapy. 2007;53:202–9.

    Article  CAS  PubMed  Google Scholar 

  140. Liu Y, Li H, Zhang Y, Ye Y, Gao Y, Li J. In vitro and in vivo activity of ciprofloxacin/fosfomycin combination therapy against ciprofloxacin-resistant Shigella flexneri isolates. Infect Drug Resistance. 2019;12:1619–28.

    Article  CAS  Google Scholar 

  141. Mikuniya T, Kato Y, Ida T, Maebashi K, Monden K, Kariyama R, et al. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J Infect Chemother. 2007;13:285–90.

    Article  CAS  PubMed  Google Scholar 

  142. Nakamura T, Kokuryo T, Hashimoto Y, Inui KI. Effects of fosfomycin and imipenem-cilastatin on the nephrotoxicity of vancomycin and cisplatin in rats. J Pharm Pharm. 1999;51:227–32.

    Article  CAS  Google Scholar 

  143. Yanagida C, Ito K, Komiya I, Horie T. Protective effect of fosfomycin on gentamicin-induced lipid peroxidation of rat renal tissue. Chem Biol Interact. 2004;148:139–47.

    Article  CAS  PubMed  Google Scholar 

  144. Shahverdi AR, Rafii F, Tavassoli F, Bagheri M, Attar F, Ghahraman A. Piperitone from Mentha longifolia var. chorodictya Rech F. reduces the nitrofurantoin resistance of strains of enterobacteriaceae. Phytother Res. 2004;18:911–4.

    Article  CAS  PubMed  Google Scholar 

  145. Abdolpour F, Shahverdi A-R, Rafii F, Fazeli M-R, Amini M. Effects of piperitone on the antimicrobial activity of nitrofurantoin and on nitrofurantoin metabolism by enterobacter cloacae. Pharm Biol. 2008;45:230–4.

    Article  CAS  Google Scholar 

  146. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49:2474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Original draft preparation: Cristiane dos Santos. Wrote or contributed to the writing of manuscript: Cristiane dos Santos, Lucas Souza dos Santos and Octávio Luiz Franco.Supervision: Octávio Luiz Franco.

Corresponding author

Correspondence to Octávio Luiz Franco.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C., dos Santos, L.S. & Franco, O.L. Fosfomycin and nitrofurantoin: classic antibiotics and perspectives. J Antibiot 74, 547–558 (2021). https://doi.org/10.1038/s41429-021-00444-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00444-z

This article is cited by

Search

Quick links