Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cephalosporin resistance, tolerance, and approaches to improve their activities

Abstract

Cephalosporins comprise a β-lactam antibiotic class whose first members were discovered in 1945 from the fungus Cephalosporium acremonium. Their clinical use for Gram-negative bacterial infections is widespread due to their ability to traverse outer membranes through porins to gain access to the periplasm and disrupt peptidoglycan synthesis. More recent members of the cephalosporin class are administered as last resort treatments for complicated urinary tract infections, MRSA, and other multi-drug resistant pathogens, such as Neisseria gonorrhoeae. Unfortunately, there has been a global increase in cephalosporin-resistant strains, heteroresistance to this drug class has been a topic of increasing concern, and tolerance and persistence are recognized as potential causes of cephalosporin treatment failure. In this review, we summarize the cephalosporin antibiotic class from discovery to their mechanisms of action, and discuss the causes of cephalosporin treatment failure, which include resistance, tolerance, and phenomena when those qualities are exhibited by only small subpopulations of bacterial cultures (heteroresistance and persistence). Further, we discuss how recent efforts with cephalosporin conjugates and combination treatments aim to reinvigorate this antibiotic class.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marshall WF, Blair JE. The cephalosporins. Mayo Clin Proc. 1999;74:187–95.

    Article  PubMed  CAS  Google Scholar 

  2. Brotzu G. Research on a new antibiotic. Cagliari Inst Hyg. 1948;1:5–15.

    Google Scholar 

  3. Newton GG, Abraham EP. Cephalosporin C, a new antibiotic containing sulphur and D-alpha-aminoadipic acid. Nature. 1955;175:548.

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Abraham EP. Cephalosporins 1945–1986. Drugs. 1987;34:1–14.

    Article  PubMed  CAS  Google Scholar 

  5. Chauvette RR, et al. Chemistry of Cephalosporin Antibiotics .2. Preparation of a new class of antibiotics and relation of structure to activity. J Am Chem Soc. 1962;84:3401.

    Article  CAS  Google Scholar 

  6. Godzeski CW, Brier G, Pavey DE. Cephalothin, a new cephalosporin with a broad antibacterial spectrum. I. In vitro studies employing the gradient plate technique. Appl Microbiol. 1963;11:122–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Griffith RS, Black HR. Cephalothin-a new antibiotic. Preliminary clinical and laboratory studies. JAMA. 1964;189:823–8.

    Article  PubMed  CAS  Google Scholar 

  8. Chang TW, Weinstein L. In vitro biological activity of cephalothin. J Bacteriol. 1963;85:1022–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. WHO model list of essential medicines - 22nd list. World Health Organization, Document: WHO/MHP/HPS/EML/2021.02 (2021).

  10. The WHO AWaRe (Access, Watch, Reserve) antibiotic book. World Health Organization, Document: ISBN 978-92-4-006238-2 (2022).

  11. Goldstein E. Rise in the prevalence of resistance to extended-spectrum cephalosporins in the USA, nursing homes and antibiotic prescribing in outpatient and inpatient settings. J Antimicrob Chemother. 2021;76:2745–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Penalva G, et al. Decreasing and stabilising trends of antimicrobial consumption and resistance in Escherichia coli and Klebsiella pneumoniae in segmented regression analysis, European Union/European Economic Area, 2001 to 2018. Euro Surveill. 2019;24:1900656.

  13. Choby JE, Ozturk T, Satola SW, Jacob JT, Weiss DS. Does cefiderocol heteroresistance explain the discrepancy between the APEKS-NP and CREDIBLE-CR clinical trial results? Comment. Lancet Microbe. 2021;2:E648–E649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Choby JE, Ozturk T, Satola SW, Jacob JT, Weiss DS. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect Dis. 2021;21:597–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jia X, et al. Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia. Int J Antimicrob Agents. 2020;55:105832.

    Article  PubMed  CAS  Google Scholar 

  16. Kishii K, Ito T, Watanabe S, Okuzumi K, Hiramatsu K. Recurrence of heterogeneous methicillin-resistant Staphylococcus aureus (MRSA) among the MRSA clinical isolates in a Japanese university hospital. J Antimicrob Chemother. 2008;62:324–8.

    Article  PubMed  CAS  Google Scholar 

  17. Ma W, Sun J, Yang S, Zhang L. Epidemiological and clinical features for cefepime heteroresistant Escherichia coli infections in Southwest China. Eur J Clin Microbiol Infect Dis. 2016;35:571–8.

    Article  PubMed  CAS  Google Scholar 

  18. Bryson D, Hettle AG, Boraston AB, Hobbs JK. Clinical mutations that partially activate the stringent response confer multidrug tolerance in Staphylococcus aureus. Antimicrob Agents Ch. 2020;64:e02103–19.

    Article  CAS  Google Scholar 

  19. Hamad MA, Austin CR, Stewart AL, Higgins M, Vazquez-Torres A, Voskuil MI. Adaptation and Antibiotic tolerance of anaerobic Burkholderia pseudomallei. Antimicrob Agents Ch. 2011;55:3313–23.

    Article  CAS  Google Scholar 

  20. Hemsley CM, Luo JX, Andreae CA, Butler CS, Soyer OS, Titball RW. Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration. Antimicrob Agents Ch. 2014;58:5775–83.

    Article  Google Scholar 

  21. Zhang SS, Liu S, Wu N, Yuan YH, Zhang WH, Zhang Y. Small non-coding RNA RyhB mediates persistence to multiple antibiotics and stresses in Uropathogenic Escherichia coli by reducing cellular metabolism. Front Microbiol. 2018;9:1–10.

    Google Scholar 

  22. Abraham EP. A glimpse of the early history of the cephalosporins. Rev Infect Dis. 1979;1:99–105.

    Article  PubMed  CAS  Google Scholar 

  23. Bo G. Giuseppe Brotzu and the discovery of cephalosporins. Clin Microbiol Infect. 2000;6:6–9.

    Article  PubMed  Google Scholar 

  24. Brakhage AA. Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev. 1998;62:547–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hu Y, Zhu B. Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synth Syst Biotechnol. 2016;1:143–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abraham E. Selective reminiscences of beta-lactam antibiotics: early research on penicillin and cephalosporins. Bioessays. 1990;12:601–6.

    Article  PubMed  CAS  Google Scholar 

  27. Abraham EP, Newton GGF, Hale CW. Purification and some properties of Cephalosporin-N, a new Penicillin. Biochem J. 1954;58:94–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hamilton-Miller JMT. Sir Edward Abraham’s contribution to the development of the cephalosporins: a reassessment. Int J Antimicrob Ag. 2000;15:179–84.

    Article  CAS  Google Scholar 

  29. Hamilton-Miller JMT. The cephalosporins and Sir Edward Abraham: Recollections about a great scientist and his part in the discovery of these antibiotics. J Antibiot. 2000;53:1003–7.

    Article  CAS  Google Scholar 

  30. Hodgkin DC, Maslen EN. The x-ray analysis of the structure of cephalosporin C. Biochem J. 1961;79:393–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Elks J. Structural formulae and nomenclature of the cephalosporin antibiotics. Drugs. 1987;34:240–6.

    Article  PubMed  Google Scholar 

  32. Lin XM, Kuck U. Cephalosporins as key lead generation beta-lactam antibiotics. Appl Microbiol Biot. 2022;106:8007–20.

    Article  CAS  Google Scholar 

  33. Byford MF, Baldwin JE, Shiau CY, Schofield CJ. The mechanism of ACV Synthetase. Chem Rev. 1997;97:2631–50.

    Article  PubMed  Google Scholar 

  34. Baldwin JE, Gagnon J, Ting HH. N-Terminal Amino-acid sequence and some properties of Isopenicillin-N Synthetase from Cephalosporium-Acremonium. Febs Lett. 1985;188:253–6.

    Article  PubMed  CAS  Google Scholar 

  35. Pang CP, et al. Purification of isopenicillin N synthetase. Biochem J. 1984;222:789–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Randall CR, et al. X-ray-absorption studies of the ferrous active-site of Isopenicillin N-Synthase and related model complexes. Biochem-Us. 1993;32:6664–73.

    Article  CAS  Google Scholar 

  37. Roach PL, et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature. 1997;387:827–30.

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Ullan RV, Casqueiro J, Banuelos O, Fernandez FJ, Gutierrez S, Martin JF. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem. 2002;277:46216–25.

    Article  PubMed  CAS  Google Scholar 

  39. Brewer SJ, Farthing JE, Turner MK. The oxygenation of the 3-methyl group of 7beta-(5-D-aminoadipamido)-3-methylceph-3-em-4-carboxylic acid (desacetoxycephalosporin C) by extracts of Acremonium chrysogenum [proceedings]. Biochem Soc Trans. 1977;5:1024–6.

    Article  PubMed  CAS  Google Scholar 

  40. Dotzlaf JE, Yeh WK. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J Bacteriol. 1987;169:1611–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Higgens CE, Hamill RL, Sands TH, Hoehn MM, Davis NE. Letter: The occurrence of deacetoxycephalosporin C in fungi and streptomycetes. J Antibiot. 1974;27:298–300.

    Article  CAS  Google Scholar 

  42. Rabe P, Kamps J, Schofield CJ, Lohans CT. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in beta-lactam biosynthesis. Nat Prod Rep. 2018;35:735–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Samson SM, et al. Cloning and expression of the fungal expandase hydroxylase gene involved in cephalosporin biosynthesis. Bio-Technol. 1987;5:1207. +

    CAS  Google Scholar 

  44. Kupka J, Shen YQ, Wolfe S, Demain AL. Studies on the ring-cyclization and ring-expansion enzymes of beta-lactam biosynthesis in Cephalosporium acremonium. Can J Microbiol. 1983;29:488–96.

    Article  PubMed  CAS  Google Scholar 

  45. Lejon S, Ellis J, Valegard K. The last step in cephalosporin C formation revealed: crystal structures of deacetylcephalosporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates. J Mol Biol. 2008;377:935–44.

    Article  PubMed  CAS  Google Scholar 

  46. Schmitt EK, Hoff B, Kuck U. Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol. 2004;88:1–43.

    PubMed  CAS  Google Scholar 

  47. Gutierrez S, Diez B, Montenegro E, Martin JF. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol. 1991;173:2354–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Martin JF, Ullan RV, Casqueiro J. Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol. 2004;88:91–109.

    PubMed  CAS  Google Scholar 

  49. Gutierrez S, Velasco J, Fernandez FJ, Martin JF. The Cefg gene of Cephalosporium-Acremonium is linked to the Cefef gene and encodes a Deacetylcephalosporin-C Acetyltransferase closely related to Homoserine O-Acetyltransferase. J Bacteriol. 1992;174:3056–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Teijeira F, Ullan RV, Guerra SM, Garcia-Estrada C, Vaca I, Martin JF. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J. 2009;418:113–24.

    Article  PubMed  CAS  Google Scholar 

  51. Ullan RV, Teijeira F, Guerra SM, Vaca I, Martin JF. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J. 2010;432:227–36.

    Article  PubMed  CAS  Google Scholar 

  52. Ullan RV, Liu G, Casqueiro J, Gutierrez S, Banuelos O, Martin JF. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genom. 2002;267:673–83.

    Article  CAS  Google Scholar 

  53. Gutierrez S, Fierro F, Casqueiro J, Martin JF. Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Anton Leeuw Int J G 1999;75:81–94.

    Article  CAS  Google Scholar 

  54. Liu L, Chen Z, Liu W, Ke X, Tian X, Chu J. Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol. 2022;106:6413–26.

    Article  PubMed  CAS  Google Scholar 

  55. Skatrud PL, Queener SW. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene. 1989;78:331–8.

    Article  PubMed  CAS  Google Scholar 

  56. Smith DJ, et al. Beta-Lactam antibiotic biosynthetic genes have been conserved in clusters in Prokaryotes and Eukaryotes. Embo J. 1990;9:741–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pollegioni L, Rosini E, Molla G. Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol. 2013;97:2341–55.

    Article  PubMed  CAS  Google Scholar 

  58. Bianchi D, Bortolo R, Golini P, Cesti P. Enzymatic transformation of cephalosporin C to 7-ACA by simultaneous action of immobilized d-amino acid oxidase and glutaryl-7-ACA acylase. Appl Biochem Biotech. 1998;73:257–68.

    Article  CAS  Google Scholar 

  59. Elander RP. Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol. 2003;61:385–92.

    Article  PubMed  CAS  Google Scholar 

  60. Bush K, Bradford PA. beta-Lactams and beta-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med. 2016;6:a025247.

  61. Chaudhry SB, Veve MP, Wagner JL. Cephalosporins: A focus on side chains and beta-lactam cross-reactivity. Pharmacy. 2019;7:103.

  62. Giamarellou H. Fourth generation cephalosporins in the antimicrobial chemotherapy of surgical infections. J Chemother. 1999;11:486–93.

    Article  PubMed  CAS  Google Scholar 

  63. Nikaido H, Liu W, Rosenberg EY. Outer membrane permeability and beta-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother. 1990;34:337–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hebeisen P, Heinze-Krauss I, Angehrn P, Hohl P, Page MGP, Then RL. In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Ch. 2001;45:825–36.

    Article  CAS  Google Scholar 

  65. Moisan H, Pruneau M, Malouin F. Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J Antimicrob Chemoth. 2010;65:713–6.

    Article  CAS  Google Scholar 

  66. Pfaller MA, et al. Ceftobiprole activity against gram-positive and -negative pathogens collected from the United States in 2006 and 2016. Antimicrob Agents Chemother. 2018;63:e01566-18.

  67. Sader HS, Fritsche TR, Kaniga K, Ge Y, Jones RN. Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob Agents Chemother. 2005;49:3501–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Moya B, Zamorano L, Juan C, Perez JL, Ge Y, Oliver A. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother. 2010;54:1213–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob. 2013;12:22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Spratt BG. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci USA. 1975;72:2999–3003.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32:234–58.

    Article  PubMed  CAS  Google Scholar 

  72. Sauvage E, Terrak M. Glycosyltransferases and Transpeptidases/Penicillin-binding proteins: valuable targets for new antibacterials. Antibiotics. 2016;5:1–27.

    Article  Google Scholar 

  73. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA. 1965;54:1133–41.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nikaido H. Crossing the envelope: how cephalosporins reach their targets. Clin Microbiol Infec. 2000;6:22–26.

    Article  CAS  Google Scholar 

  75. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794:808–16.

    Article  PubMed  CAS  Google Scholar 

  76. Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25:1340.

  77. Balaban NQ, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17:441–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021;10:165.

  79. Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30.

    Article  PubMed  CAS  Google Scholar 

  80. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014;12:1221–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Arbeloa A, et al. Role of class A penicillin-binding proteins in PBP5-mediated beta-lactam resistance in Enterococcus faecalis. J Bacteriol. 2004;186:1221–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lazzaro LM, Cassisi M, Stefani S, Campanile F. Impact of PBP4 alterations on beta-Lactam resistance and ceftobiprole non-susceptibility among Enterococcus faecalis Clinical Isolates. Front Cell Infect Mi. 2022;11:1–9.

    Google Scholar 

  83. Moon TM, et al. The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into beta-lactam resistance. J Biol Chem. 2018;293:18574–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rice LB, et al. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob Agents Chemother. 2004;48:3028–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Vesic D, Kristich CJ. MurAA is required for intrinsic Cephalosporin resistance of Enterococcus faecalis. Antimicrob Agents Ch. 2012;56:2443–51.

    Article  CAS  Google Scholar 

  86. Fergestad ME, Stamsas GA, Morales Angeles D, Salehian Z, Wasteson Y, Kjos M. Penicillin-binding protein PBP2a provides variable levels of protection toward different beta-lactams in Staphylococcus aureus RN4220. Microbiologyopen. 2020;9:e1057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2010;54:1670–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Saravolatz LD, Stein GE, Johnson LB. Ceftaroline: A novel cephalosporin with activity against Methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2011;52:1156–63.

    Article  PubMed  CAS  Google Scholar 

  89. Tomberg J, et al. Alanine 501 mutations in Penicillin-binding Protein 2 from Neisseria gonorrhoeae: Structure, mechanism, and effects on cephalosporin resistance and biological fitness. Biochem-Us. 2017;56:1140–50.

    Article  CAS  Google Scholar 

  90. Pucci MJ, Boice-Sowek J, Kessler RE, Dougherty TJ. Comparison of cefepime, cefpirome, and cefaclidine binding affinities for penicillin-binding proteins in Escherichia coli K-12 and Pseudomonas aeruginosa SC8329. Antimicrob Agents Chemother. 1991;35:2312–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hedge PJ, Spratt BG. Resistance to beta-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature. 1985;318:478–80.

    Article  ADS  PubMed  CAS  Google Scholar 

  92. Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70:1420–8.

    Article  PubMed  CAS  Google Scholar 

  93. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mammeri H, Poirel L, Fortineau N, Nordmann P. Naturally occurring extended-spectrum cephalosporinases in Escherichia coli. Antimicrob Agents Chemother. 2006;50:2573–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Berrazeg M, et al. Mutations in beta-Lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to Antipseudomonal Cephalosporins. Antimicrob Agents Chemother. 2015;59:6248–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hidri N, et al. Resistance to ceftazidime is associated with a S220Y substitution in the omega loop of the AmpC beta-lactamase of a Serratia marcescens clinical isolate. J Antimicrob Chemoth. 2005;55:496–9.

    Article  CAS  Google Scholar 

  97. Jacobs C, Frere JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell. 1997;88:823–32.

    Article  PubMed  CAS  Google Scholar 

  98. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54:969–76.

    Article  PubMed  CAS  Google Scholar 

  99. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum beta-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3:dlab092.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bahr G, Gonzalez LJ, Vila AJ. Metallo-beta-lactamases in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chem Rev. 2021;121:7957–8094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Mojica MF, Rossi MA, Vila AJ, Bonomo RA. The urgent need for metallo-beta-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022;22:e28–e34.

    Article  PubMed  CAS  Google Scholar 

  102. Charrel RN, Pages JM, De Micco P, Mallea M. Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob Agents Chemother. 1996;40:2854–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6:893–903.

    Article  PubMed  CAS  Google Scholar 

  104. Choi U, Lee CR. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol. 2019;10:953.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Harder KJ, Nikaido H, Matsuhashi M. Mutants of Escherichia-Coli that are resistant to certain Beta-Lactam compounds lack the Ompf Porin. Antimicrob Agents Ch. 1981;20:549–52.

    Article  CAS  Google Scholar 

  106. Stephan J, Mailaender C, Etienne G, Daffe M, Niederweis M. Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;48:4163–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Domenech-Sanchez A, et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother. 2003;47:3332–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Bredin J, et al. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem J. 2002;363:521–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. De E, et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol Microbiol. 2001;41:189–98.

    Article  PubMed  CAS  Google Scholar 

  110. Simonet V, Mallea M, Pages JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Ch. 2000;44:311–5.

    Article  CAS  Google Scholar 

  111. Pagel M, Simonet V, Li J, Lallemand M, Lauman B, Delcour AH. Phenotypic characterization of pore mutants of the Vibrio cholerae porin OmpU. J Bacteriol. 2007;189:8593–8600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Grosjean M, et al. Reassessment of the cooperativity between efflux system MexAB-OprM and cephalosporinase AmpC in the resistance of Pseudomonas aeruginosa to β-lactams. J Antimicrob Chemoth. 2021;76:536–9.

    Article  CAS  Google Scholar 

  113. Masuda N, Gotoh N, Ohya S, Nishino T. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Ch. 1996;40:909–13.

    Article  CAS  Google Scholar 

  114. Purssell A, Poole K. Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology. 2013;159:2058–73.

    Article  PubMed  CAS  Google Scholar 

  115. El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev. 2015;28:191–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Band VI, Weiss DS. Heteroresistance: A cause of unexplained antibiotic treatment failure? PLoS Pathog. 2019;15:e1007726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Band VI, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol. 2016;1:16053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Nicoloff H, Hjort K, Levin BR, Andersson DI. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol. 2019;4:504–14.

    Article  PubMed  CAS  Google Scholar 

  119. Hallander HO, Laurell G. Identification of cephalosporin-resistant Staphylococcus aureus with the disc diffusion method. Antimicrob Agents Chemother. 1972;1:422–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hung KH, Wang MC, Huang AH, Yan JJ, Wu JJ. Heteroresistance to cephalosporins and penicillins in Acinetobacter baumannii. J Clin Microbiol. 2012;50:721–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lu Y, et al. Quorum sensing regulates heteroresistance in Pseudomonas aeruginosa. Front Microbiol. 2022;13:1017707.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Potrykus K, Cashel M. p)ppGpp: still magical?. Annu Rev Microbiol. 2008;62:35–51.

    Article  PubMed  CAS  Google Scholar 

  123. Kim H, Kim JH, Cho H, Ko KS. Overexpression of a DNA Methyltransferase increases persister cell formation in Acinetobacter baumannii. Microbiol Spectr. 2022;10:e0265522.

    Article  PubMed  Google Scholar 

  124. Yu W, et al. Absence of tmRNA Increases the persistence to Cefotaxime and the Intercellular Accumulation of Metabolite GlcNAc in Aeromonas veronii. Front Cell Infect Microbiol. 2020;10:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Alkasir R, et al. Characterization and Transcriptome analysis of Acinetobacter baumannii persister cells. Micro Drug Resist. 2018;24:1466–74.

    Article  CAS  Google Scholar 

  126. Advancing Health through Innovation: New Drug Approvals 2019. United States Food and Drug Administration, Document: https://www.fda.gov/media/134493/download (2020).

  127. Sato T, Yamawaki K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel Siderophore Cephalosporin. Clin Infect Dis. 2019;69:S538–S543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Cook-Libin S, Sykes EME, Kornelsen V, Kumar A. Iron acquisition mechanisms and their role in the virulence of Acinetobacter baumannii. Infect Immun. 2022;90:e0022322.

  129. Page MGP. The role of Iron and Siderophores in infection, and the development of Siderophore antibiotics. Clin Infect Dis. 2019;69:S529–S537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ji C, Juarez-Hernandez RE, Miller MJ. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem. 2012;4:297–313.

    Article  PubMed  CAS  Google Scholar 

  131. Ito A, et al. In Vitro antibacterial properties of cefiderocol, a Novel Siderophore Cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother. 2018;62:e01454-17.

  132. Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: Systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance. Antibiotics. 2022;11:723.

  133. Malik S, Kaminski M, Landman D, Quale J. Cefiderocol resistance in Acinetobacter baumannii: Roles of beta-Lactamases, Siderophore receptors, and Penicillin binding Protein 3. Antimicrob Agents Chemother. 2020;64:e01221-20.

  134. Poirel L, Sadek M, Nordmann P. Contribution of PER-Type and NDM-Type beta-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2021;65:e0087721.

    Article  PubMed  Google Scholar 

  135. Klein S, et al. Rapid development of Cefiderocol resistance in Carbapenem-resistant Enterobacter cloacae during therapy is associated with heterogeneous mutations in the Catecholate Siderophore receptor cirA. Clin Infect Dis. 2022;74:905–8.

    Article  PubMed  CAS  Google Scholar 

  136. Lee N, Yuen KY, Kumana CR. Clinical role of beta-lactam/beta-lactamase inhibitor combinations. Drugs. 2003;63:1511–24.

    Article  PubMed  CAS  Google Scholar 

  137. van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation beta-Lactam/beta-Lactamase inhibitor combinations. Clin Infect Dis. 2016;63:234–41.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Castanheira M, Mills JC, Costello SE, Jones RN, Sader HS. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of beta-lactamase-producing strains. Antimicrob Agents Chemother. 2015;59:3509–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of Ceftolozane-Tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. Hospitals (2011-2012). Antimicrob Agents Ch. 2013;57:6305–10.

    Article  CAS  Google Scholar 

  140. Flamm RK, Farrell DJ, Sader HS, Jones RN. Ceftazidime/avibactam activity tested against Gram-negative bacteria isolated from bloodstream, pneumonia, intra-abdominal and urinary tract infections in US medical centres (2012). J Antimicrob Chemother. 2014;69:1589–98.

    Article  PubMed  CAS  Google Scholar 

  141. Sader HS, Castanheira M, Mendes RE, Flamm RK, Farrell DJ, Jones RN. Ceftazidime-avibactam activity against multidrug-resistant Pseudomonas aeruginosa isolated in U.S. medical centers in 2012 and 2013. Antimicrob Agents Chemother. 2015;59:3656–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Farrag HA, Abdallah N, Shehata MMK, Awad EM. Natural outer membrane permeabilizers boost antibiotic action against irradiated-resistant bacteria. J Biomed Sci. 2019;26:69.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chiu S, et al. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot. 2022;75:593–609.

    Article  CAS  Google Scholar 

  144. Gunderson BW, Ibrahim KH, Hovde LB, Fromm TL, Reed MD, Rotschafer JC. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2003;47:905–9.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pages JM, Peslier S, Keating TA, Lavigne JP, Nichols WW. Role of the outer membrane and Porins in susceptibility of beta-Lactamase-producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrob Agents Chemother. 2015;60:1349–59.

    Article  PubMed  Google Scholar 

  146. Nang SC, Azad MAK, Velkov T, Zhou QT, Li J. Rescuing the last-line Polymyxins: Achievements and challenges. Pharm Rev. 2021;73:679–728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother. 2017;72:1373–85.

    Article  PubMed  CAS  Google Scholar 

  148. Mushtaq S, Vickers A, Woodford N, Haldimann A, Livermore DM. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J Antimicrob Chemother. 2019;74:953–60.

    Article  PubMed  CAS  Google Scholar 

  149. Morinaka A, et al. OP0595, a new diazabicyclooctane: mode of action as a serine beta-lactamase inhibitor, antibiotic and beta-lactam ‘enhancer’. J Antimicrob Chemoth. 2015;70:2779–86.

    Article  CAS  Google Scholar 

  150. Kim S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–D1395.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 250th Anniversary Fund for Innovation in Undergraduate Education, the Program for Community Engaged Scholarship, and the Council on Science and Technology at Princeton University (MPB). The content is solely the responsibility of the authors and does not necessarily represent the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

AHA, RSB, SDWC, LLE, DS, EJW, GL, KJS, and MPB wrote and revised the manuscript.

Corresponding author

Correspondence to Mark P. Brynildsen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araten, A.H., Brooks, R.S., Choi, S.D.W. et al. Cephalosporin resistance, tolerance, and approaches to improve their activities. J Antibiot 77, 135–146 (2024). https://doi.org/10.1038/s41429-023-00687-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00687-y

Search

Quick links