Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Longicatenamides A–D, Two Diastereomeric Pairs of Cyclic Hexapeptides Produced by Combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596

Abstract

Longicatenamides A–D, two diastereomeric pairs of new cyclic hexapeptides, were isolated from the combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Their planar structures were determined by spectroscopic analysis including extensive 2D NMR and MS analysis. The absolute configurations of their component amino acids were determined by the use of highly sensitive reagents we recently developed; the highly sensitive-advanced Marfey’s method (HS-advanced Marfey’s method), which led us to reduce the sample loss and prevent incorrect structural determination. Particularly, the Cβ-stereochemistry of hyGlu in longicatenamides A and C was assigned without any use of Cβ-Marfey’s methods. Longicatenamide A exhibited weak but preferential antimicrobial activity against Bacillus subtilis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bérdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot. 2012;65:385–95.

    Article  Google Scholar 

  2. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014;158:412–21.

    Article  CAS  Google Scholar 

  3. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017;114:5601–6.

    Article  CAS  Google Scholar 

  4. Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011;77:400–6.

    Article  CAS  Google Scholar 

  5. Hshino S, Onaka H, Abe I. Activation of silent biosynthetic pathway and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acidcontaining bacteria. J Ind Microbiol Biotechnol. 2019;46:363–74.

    Article  Google Scholar 

  6. Kakeya H. Natural products-prompted chemical biology: phenotypic screening and a new platform for target identification. Nat Prod Rep. 2016;33:648–54.

    Article  CAS  Google Scholar 

  7. Liu C, Kakeya H. Cryptic chemical communication: Secondary metabolic responses revealed by microbial co-culture. Chem Asian J. 2020;15:327–37.

    Article  CAS  Google Scholar 

  8. Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org Lett. 2015;17:1918–21.

    Article  CAS  Google Scholar 

  9. Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. Discovery and total synthesis of streptoaminals: Antimicrobial [5,5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew Chem Int Ed. 2016;55:10278–82.

    Article  CAS  Google Scholar 

  10. Ozaki T, Sugiyama R, Shimomura M, Nishimura S, Asamizu S, Katsuyama Y, et al. Identification of the common biosynthetic gene cluster for both antimicrobial streptoaminals and antifungal 5-alkyl-1,2,3,4-tetrahydroquinolines. Org Biomol Chem. 2019;17:2370–8.

    Article  CAS  Google Scholar 

  11. Sugiyama R, Nakatani T, Nishimura S, Takenaka K, Ozaki T, Asamizu S, et al. Chemical interactions of cryptic actinomycete metabolite 5-Alkyl-1,2,3,4-tetrahydroquinolines through aggregate formation. Angew Chem Int Ed. 2019;58:13486–91.

    Article  CAS  Google Scholar 

  12. Jiang Y, Lu S, Hirai G, Kato T, Onaka H, Kakeya H. Enhancement of saccharothriolide production and discovery of a new metabolite, saccharothriolide C2, by combined-culture of Saccharothrix sp. and Tsukamurella pulmonis. Tetrahedron Lett. 2019;60:1072–4.

    Article  CAS  Google Scholar 

  13. Von Nussbaum F, Anlauf S, Freiberg C, Benet-Buchholz J, Schamberger J, Henkel T, et al. Total synthesis and initial structure–activity relationships of longicatenamycin A. ChemMedChem. 2008;3:619–26.

    Article  Google Scholar 

  14. Kuranaga T, Minote M, Morimoto R, Pan C, Ogawa H, Kakeya H. Highly sensitive labeling reagents for scarce natural products. ACS Chem Biol. 2020;15:2499–506.

    Article  CAS  Google Scholar 

  15. Kishimoto S, Tsunematsu Y, Nishimura S, Hayashi Y, Hattori A, Kakeya H. Tumescenamide C, an antimicrobial cyclic lipodepsipeptide from Streptomyces sp. Tetrahedron. 2012;68:5572–8.

    Article  CAS  Google Scholar 

  16. Takahashi N, Kaneko K, Kakeya H. Total synthesis and antimicrobial activity of tumescenamide C and its derivatives. J Org Chem. 2020;85:4530–5.

    Article  CAS  Google Scholar 

  17. Shiba T, Mukunoki Y. The total structure of the antibiotic longicatenamycin. J Antibiot. 1975;28:561–6.

    Article  CAS  Google Scholar 

  18. Zou B, Long K, Ma D. Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau’amide. Org Lett. 2005;7:4237–40.

    Article  CAS  Google Scholar 

  19. Sugiyama H, Watanabe A, Teruya T, Suenaga K. Synthesis of palau’amide and its diastereomers: confirmation of its stereostructure. Tetrahedron Lett. 2009;50:7343–5.

    Article  CAS  Google Scholar 

  20. Kuranaga T, Sesoko Y, Sakata K, Maeda N, Hayata A, Inoue M. Total synthesis and complete structural assignment of yaku’amide A. J Am Chem Soc. 2013;135:5467–74.

    Article  CAS  Google Scholar 

  21. Kuranaga T, Mutoh H, Sesoko Y, Goto T, Matsunaga S, Inoue M. Elucidation and total synthesis of the correct structures of tridecapeptides yaku’amides A and B. Synthesis-driven stereochemical reassignment of the four amino acid residues. J Am Chem Soc. 2015;137:9443–51.

    Article  CAS  Google Scholar 

  22. Son S, Hong Y-S, Jang M, Heo KT, Lee B, Jang J-P, et al. Nicrophorusamides A and B, antibacterial chlorinated cyclic peptides from a gut bacterium of the carrion beetle Nicrophorus concolor. J Nat Prod. 2017;80:2962–8.

    Article  Google Scholar 

  23. Marfey P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun. 1984;49:591–6.

    Article  CAS  Google Scholar 

  24. Kuranaga T, Matsuda K, Takaoka K, Tachikawa C, Sano A, Itoh K, et al. Total synthesis and structural revision of kasumigamide, and identification of a new analogue. Chem Bio Chem. 2020;21:3329–32.

    Article  CAS  Google Scholar 

  25. Ishida K, Murakami M. Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J Org Chem. 2000;65:5898–900.

    Article  CAS  Google Scholar 

  26. Holm GE, Gortner KA. The humin formed by the acid hydrolysis of proteins VI The effect of acid hydrolysis upon tryptophane. J Am Chem Soc. 1920;42:2378–85.

    Article  CAS  Google Scholar 

  27. Bhushan R, Brückner H. Use of Marfey’s reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:3148–61.

    Article  CAS  Google Scholar 

  28. Vijayasarathy S, Prasad P, Fremlin LJ, Ratnayake R, Salim AA, Khalil Z, et al. C3 and 2D C3 Marfey’s methods for amino acid analysis in natural products. J Nat Prod. 2016;79:421–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan [17H06401 (H.K.), 18K14396 (T.K.), and 19H02840 (H.K.)], the Platform Project for Supporting Drug Discovery and Life Science Research from the Japan Agency for Medical Research and Development (AMED) [20am01092j0004 (H.K.)], Japan, and the Tokyo Biochemical Research Foundation (T.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Kakeya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Matsumoto, T., Kuranaga, T. et al. Longicatenamides A–D, Two Diastereomeric Pairs of Cyclic Hexapeptides Produced by Combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. J Antibiot 74, 307–316 (2021). https://doi.org/10.1038/s41429-020-00400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-00400-3

This article is cited by

Search

Quick links