Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft polymerization of methyl methacrylate on the surface of poly(vinylidene fluoride) using tributylborane as an initiator

Abstract

Tributylborane-initiated graft polymerization of methyl methacrylate on a poly(vinylidene fluoride) film was successfully achieved. The reaction was affected by the temperature and concentration of tributylborane, and a 41% graft yield was obtained under the optimized conditions. This value was higher than those obtained with other methods. This method facilitated modifications of only the surface of the poly(vinylidene fluoride) film, which was confirmed by IR spectroscopy and cross-section observations. New physical properties were added to the surface, such as hydrophilicity, which was confirmed by a decrease in the water contact angle from 82.5° to 68.6° after graft polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kakulite KK, Panwar SS, Kandasubramanian B. A review: advancements in fluoro-based polymers for aggrandizing anti-galling and wear resistant characteristics. SN Appl Sci. 2019;1:942–65. https://doi.org/10.1007/s42452-019-0924-3.

    Article  CAS  Google Scholar 

  2. Liu F, Hashim NA, Liu Y, Abed MRM, Li K. Progress in the production and modification of PVDF membranes. J Mater Chem 2011;375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014.

    Article  CAS  Google Scholar 

  3. Wang D, Li K, Teo WK. Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. J Mater Chem 1999;163:211–20. https://doi.org/10.1016/S0376-7388(99)00181-7.

    Article  CAS  Google Scholar 

  4. Svarfvar BL, Ekman KB, Sundell MJ, Näsman JH. Electron‐beam graft‐modified membranes with externally controlled flux. Polym Adv Technol. 1996;7:839–46. 10.1002/(SICI)1099-1581(199611)7:11<839::AID-PAT592>3.0.CO;2-T

    Article  CAS  Google Scholar 

  5. Liang S, Kang Y, Tiraferri A, Giannelis EP, Huang X, Elimelech M. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces. 2013;5:6694–703. https://doi.org/10.1021/am401462e.

    Article  CAS  PubMed  Google Scholar 

  6. Zhai GQ, Toh SC, Tan WL, Kang ET, Neoh GK. Poly(vinylidene fluoride) with grafted zwitterionic polymer side chains for electrolyte-responsive microfiltration membranes. Langmuir. 2003;19:7030–7. https://doi.org/10.1021/la034440q.

    Article  CAS  Google Scholar 

  7. Wang P, Tan KL, Kang ET, Neoh KG. Synthesis, characterization and anti-fouling properties of poly(ethylene glycol) grafted poly(vinylidene ¯uoride) copolymer membrane. J Mater Chem. 2001;11:783–9. https://doi.org/10.1039/B007310P.

    Article  CAS  Google Scholar 

  8. Ying L, Wang P, Kang ET, Neoh KG. Synthesis and characterization of poly(acrylic acid)-graft-poly(vinylidene fluoride) copolymers and pH-sensitive membranes. Macromolecules. 2002;35:673–9. https://doi.org/10.1021/ma0112568.

    Article  CAS  Google Scholar 

  9. Ying L, Wang P, Kang ET, Neoh KG. Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-sensitive membranes. Langmuir. 2002;18:6416–23. https://doi.org/10.1021/la020241f.

    Article  CAS  Google Scholar 

  10. Zhai G, Ying L, Kang ET, Neoh KG. Poly(vinylidene fluoride) with grafted 4-vinylpyridine polymer side chains for pH-sensitive microfiltration membranes. J Mater Chem. 2002;12:3508–15. https://doi.org/10.1039/B206486C.

    Article  CAS  Google Scholar 

  11. Sui Y, Wang Z, Gao X, Gao C. Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J Mater Chem. 2012;413-414:38–47. https://doi.org/10.1016/j.memsci.2012.03.055.

    Article  CAS  Google Scholar 

  12. Meng JQ, Chen CL, Huang LP, Du QY, Zhang YF. Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface. Appl Surf Sci. 2011;257:6282–90. https://doi.org/10.1016/j.apsusc.2011.02.062.

    Article  CAS  Google Scholar 

  13. Chiang YC, Chang Y, Higuchi A, Chen WY, Ruaan RC. Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J Mater Chem. 2009;339:151–9. https://doi.org/10.1016/j.memsci.2009.04.044.

    Article  CAS  Google Scholar 

  14. Chen Y, Ying L, Yu W, Kang ET, Neoh KG. Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes. Macromolecules. 2003;36:9451–7. https://doi.org/10.1021/ma035194s.

    Article  CAS  Google Scholar 

  15. Akthakul A, Hochbaum AI, Stellacci F, Mayes AM. Size Fractionation of metal nanoparticles by membrane filtration. Adv Mater. 2005;17:532–5. https://doi.org/10.1002/adma.200400636.

    Article  CAS  Google Scholar 

  16. Zhang M, Nguyen QT, Ping Z. Hydrophilic modification of poly (vinylidene fluoride) microporous membrane. J Mater Chem. 2009;327:78–86. https://doi.org/10.1016/j.memsci.2008.11.020.

    Article  CAS  Google Scholar 

  17. Sauguet L, Boyer C, Ameduri B, Boutevin B. Synthesis and characterization of poly(vinylidene fluoride)-g-poly(styrene) graft polymers obtained by atom transfer radical polymerization of styrene. Macromolecules. 2006;39:9087–101. https://doi.org/10.1021/ma061554a.

    Article  CAS  Google Scholar 

  18. Kobayashi M, Higaki Y, Kimura T, Boschet F, Takahara A, Amedurio B. Direct surface modification of poly(VDF-co-TrFE) films by surface-initiated ATRP without pretreatment. RSC Adv. 2016;6:86373–84. https://doi.org/10.1039/C6RA18397B.

    Article  CAS  Google Scholar 

  19. Kim YW, Lee DK, Lee KJ, Kim JH. Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes. Eur Polym. 2008;44:932–9. https://doi.org/10.1016/j.eurpolymj.2007.12.020.

    Article  CAS  Google Scholar 

  20. Hester JF, Banerjee P, Won YY, Akthakul A, Acar MH, Mayes AM. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules. 2002;35:7652–61. https://doi.org/10.1021/ma0122270.

    Article  CAS  Google Scholar 

  21. Samanta S, Chatterjee DP, Manna S, Mandal A, Garai A, Nandi AK. Multifunctional hydrophilic poly(vinylidene fluoride) graft copolymer with supertoughness and supergluing properties. Macromolecules. 2009;42:3112–20. https://doi.org/10.1021/ma9003117.

    Article  CAS  Google Scholar 

  22. Li MZ, Li JH, Shao XS, Miao J, Wang JB, Zhang QQ, et al. Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique. J Membr Sci. 2012;405-406:141–8. https://doi.org/10.1016/j.memsci.2012.02.062.

    Article  CAS  Google Scholar 

  23. Hai TAP, Matsukuma H, Sugimoto R. Grafting poly(3-hexylthiophene) to the surface of polypropylene using oxidative polymerization. Polymer. 2017;121:247–55. https://doi.org/10.1016/j.polymer.2017.06.027.

    Article  CAS  Google Scholar 

  24. Kaur I, Singh B, Upasana. Phase-transfer-agent-aided polymerization and graft copolymerization of acrylamide. J Appl Polym Sci. 2003;91:2364–75. https://doi.org/10.1002/app.13379.

    Article  CAS  Google Scholar 

  25. Kumar B, Negi YS.Water absorption and viscosity behaviour of thermally stable novel graft copolymer of carboxymethyl cellulose and poly(sodium 1-hydroxy acrylate. Carbohydr Polym. 2018;181:862–70. https://doi.org/10.1016/j.carbpol.2017.11.066.

    Article  CAS  PubMed  Google Scholar 

  26. Gu D, Zhang L, Chen S, Song K, Liu S. Significant reduction of the friction and wear of PMMA based composite by filling with PTFE. Polymers. 2018;10:966–76. https://doi.org/10.3390/polym10090966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Renaud P, Beauseigneur A, Forster AB, Becattini B, Darmency V, Kandhasamy S, et al. Boron: a key element in radical reactions*. Pure Appl Chem 2007;79:223–33. https://doi.org/10.1351/pac200779020223.

    Article  CAS  Google Scholar 

  28. Hagana DO. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev. 2008;37:308–19. https://doi.org/10.1039/B711844A.

    Article  Google Scholar 

  29. Sheng J, Hu J. Graft polymerization of styrene onto random ethylene–propylene diene monomer. J Appl Polym Sci. 1996;60:1499–503. https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9%3C1499::AID-APP24%3E3.0.CO;2-W.

    Article  CAS  Google Scholar 

  30. Shi Q, Su Y, Ning X, Chen W, Peng J, Jiang Z. Graft polymerization of methacrylic acid onto polyethersulfone for potential pH-responsive membrane materials. J Membr Sci. 2010;347:62–68. https://doi.org/10.1016/j.memsci.2009.10.006.

    Article  CAS  Google Scholar 

  31. Makhlouf C, Marais S, Roudesli S. Graft copolymerization of acrylic acid onto polyamide fibers. Appl Surf Sci. 2007;253:5521–8. https://doi.org/10.1016/j.apsusc.2006.12.086.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Sugimoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuta, Y., Kobiro, K., Nishiwaki, N. et al. Graft polymerization of methyl methacrylate on the surface of poly(vinylidene fluoride) using tributylborane as an initiator. Polym J 56, 79–85 (2024). https://doi.org/10.1038/s41428-023-00853-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00853-x

Search

Quick links