Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Postpolymerization modification of poly(2-alkoxyethoxycarbonylmethylene)s: Efficient formation and reactivity of the ketene silyl acetal repeating units in the polymer main chain

Abstract

Postpolymerization modifications of poly(2-methoxyethoxycarbonylmethylene) (pMEDA’) and poly(2-phenoxyethoxycarbonylmethylene) (pPEDA’) are described. The reactions of these polymers with mixtures of chlorotrimethylsilane (Me3SiCl) and lithium diisopropylamide (LDA) efficiently transformed the alkoxycarbonylmethylene repeating units to ketene silyl acetals to yield a product with up to 93 mol% composition of the latter unit. The ketene silyl acetal composition of the product was controlled by changing the feed ratio of Me3SiCl/LDA with respect to the alkoxycarbonylmethylene unit. Tetrabutylammonium fluoride (TBAF)-mediated benzylation of the highly silylated polymer with benzyl bromide yielded a polymer containing side chain O (major)- and main chain C (minor)-benzylated units along with the unreacted ketene silyl acetal unit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7

Similar content being viewed by others

References

  1. Ihara E. Poly(substituted Methylene) synthesis: construction of C−C main chain from one carbon unit. Adv Polym Sci. 2010;231:191–231.

    Article  CAS  Google Scholar 

  2. Jellema E, Jongerius AL, Reek JNH, de Bruin B. C1 polymerization and related C−C bond forming ‘carbene insertion’ reactions. Chem Soc Rev. 2010;39:1706–23.

    Article  CAS  PubMed  Google Scholar 

  3. Franssen NMG, Walters AJC, Reek JNH, de Bruin B. Carbene insertion into transition metal-carbon bonds: a new tool for catalytic C–C bond formation. Catal Sci Technol. 2011;1:153–65.

    Article  CAS  Google Scholar 

  4. Cahoon CR, Bielawski CW. Metal-promoted C1 polymerizations. Coord Chem Rev. 2018;374:261–78.

    Article  CAS  Google Scholar 

  5. Ihara E, Shimomoto H. Polymerization of diazoacetates: New synthetic strategy for C-C main chain polymers. Polymer. 2019;174:234–58.

    Article  CAS  Google Scholar 

  6. Shimomoto H. Synthesis of functional polymers by the Pd-mediated polymerization of diazoacetates and polycondensation of bis(diazocarbonyl) compounds. Polym J. 2020;52:269–77.

    Article  CAS  Google Scholar 

  7. Li F, Xiao L, Li B, Hu X, Liu L. Carbene polymerization from the catalyzed decomposition of diazo compounds: Mechanism and modern development. Coord Chem Rev. 2022;473:214806.

    Article  CAS  Google Scholar 

  8. Kang S, Lu SJ, Bielawski CW. C1 polymerization of fluorinated Aryl Diazomethanes. ACS Macro Lett. 2022;11:7–14.

    Article  CAS  PubMed  Google Scholar 

  9. Hetterscheid DGH, Hendriksen C, Dzik WI, Smits JMM, van Eck ERH, Rowan AE, et al. Rhodium-Mediated Stereoselective Polymerization of “Carbenes”. J Am Chem Soc. 2006;128:9746–52.

    Article  CAS  PubMed  Google Scholar 

  10. Jellema E, Budzelaar PHM, Reek JNH, de Bruin B. Rh-mediated polymerization of carbenes: mechanism and stereoregulation. J Am Chem Soc. 2007;129:11631–41.

    Article  CAS  PubMed  Google Scholar 

  11. Ihara E, Ishiguro Y, Yoshida N, Hiraren T, Itoh T, Inoue K. (N-Heterocyclic Carbene)Pd/Borate initiating systems for polymerization of ethyl diazoacetate. Macromolecules 2009;42:8608–10.

    Article  ADS  CAS  Google Scholar 

  12. Walters AJC, Troeppner O, Ivanović-Burmazović I, Tejel C, del Río MP, Reek JNH, et al. Stereospecific carbene polymerization with oxygenated Rh(diene) species. Angew Chem Int Ed. 2012;51:5157–61.

    Article  CAS  Google Scholar 

  13. Shimomoto H, Kawamata J, Murakami H, Yamashita K, Itoh T, Ihara E. Polymerization of alkyl diazoacetates initiated by the amidinate/Pd system: efficient synthesis of high molecular weight poly(alkoxycarbonylmethylene)s with moderate stereoregularity. Polym Chem. 2017;8:4030–7.

    Article  CAS  Google Scholar 

  14. Shimomoto H, Ichihara S, Hayashi H, Itoh T, Ihara E. Polymerization of alkyl Diazoacetates initiated by Pd(Naphthoquinone)/Borate systems: dual role of Naphthoquinones as oxidant and anionic ligand for generating active Pd(II) species. Macromolecules 2019;52:6976–87.

    Article  ADS  CAS  Google Scholar 

  15. Shimomoto H, Hayashi H, Aramasu K, Itoh T, Ihara E. Polymerization of Diazoacetates initiated by the Pd(N-arylmaleimide)/NaBPh4 System: Maleimide Insertion into a Pd–C bond preceding to initiation leading to efficient α-chain-end functionalization of Poly(alkoxycarbonylmethylene)s. Macromolecules 2022;55:5985–96.

    Article  ADS  CAS  Google Scholar 

  16. Shimomoto H, Miyano Y, Kinoshita K, Itoh T, Ihara E. Initiating abilities of diphosphine- and diamine-ligated Pd complexes/NaBPh4 systems for C1 polymerization of diazoacetates. Polym Chem. 2023;14:1007–18.

    Article  CAS  Google Scholar 

  17. Ihara E, Takahashi H, Akazawa M, Itoh T, Inoue K. Polymerization of various alkyl diazoacetates initiated with (N-Heterocyclic Carbene)Pd/Borate systems. Macromolecules 2011;44:3287–92.

    Article  ADS  CAS  Google Scholar 

  18. Ihara E, Okada R, Sogai T, Asano T, Kida M, Inoue K, et al. Pd-mediated polymerization of diazoacetates with aromatic ester group: synthesis and photophysical property of Poly(1-pyrenylmethoxycarbonylmethylene). J Polym Sci Part A Polym Chem. 2013;51:1020–3.

    Article  ADS  CAS  Google Scholar 

  19. Shimomoto H, Itoh E, Itoh T, Ihara E, Hoshikawa N, Hasegawa N. Polymerization of hydroxy-containing diazoacetates: synthesis of hydroxy-containing “Poly(substituted methylene)s” by Palladium-mediated polymerization and poly(ester−ether)s by polycondensation through o−h insertion reaction. Macromolecules 2014;47:4169–77.

    Article  ADS  CAS  Google Scholar 

  20. Shimomoto H, Shimizu K, Takeda C, Kikuchi M, Kudo T, Mukai H, et al. Synthesis of polymers with densely-grafted oligo(ethylene glycol)s by Pd-initiated polymerization of oxyethylene-containing diazoacetates. Polym Chem. 2015;6:8124–31.

    Article  CAS  Google Scholar 

  21. Koshimizu N, Aizawa Y, Sakajiri K, Shikinaka K, Shigehara K, Kang S, et al. Thermotropic Behavior of Syndiotactic Polymethylenes with ω‑[4‑(trans-4-Pentylcyclohexyl)phenoxy]alkyloxycarbonyl Side Chains. Macromolecules. 2015;48:3653–61.

  22. Shimomoto H, Oda A, Kanayama M, Sako T, Itoh T, Ihara E, et al. Pd-Initiated polymerization of diazo compounds bearing dialkoxyphosphinyl group and hydrolysis of the resulting polymers and oligomers to afford phosphonic acid-containing products. J Polym Sci Part A Polym Chem. 2016;4:1742–51.

    Article  ADS  Google Scholar 

  23. Shimomoto H, Uegaito T, Yabuki S, Teratani S, Itoh T, Ihara E, et al. Lithium ion conductivity of polymers containing N-phenyl-2,6-dimethoxybenzamide framework in their side chains: Possible role of bond rotation in polymer side chain substituents for efficient ion transport. Solid State Ion. 2016;292:1–7.

    Article  CAS  Google Scholar 

  24. Shimomoto H, Kikuchi M, Aoyama J, Sakayoshi D, Itoh T, Ihara E. Cyclopolymerization of Bis(diazocarbonyl) compounds leading to well-defined polymers essentially consisting of cyclic constitutional units. Macromolecules 2016;49:8459–65.

    Article  ADS  CAS  Google Scholar 

  25. Shimomoto H, Kudo T, Tsunematsu S, Itoh T, Ihara E. Fluorinated poly(substituted methylene)s prepared by Pd-initiated polymerization of fluorine-containing alkyl and phenyl diazoacetates: their unique solubility and postpolymerization modification. Macromolecules 2018;51:328–35.

    Article  ADS  CAS  Google Scholar 

  26. Takaya T, Oda T, Shibazaki Y, Hayashi Y, Shimomoto H, Ihara E, et al. Excited-state dynamics of pyrene incorporated into poly(substituted methylene)s: Effects of dense packing of pyrenes on excimer formation. Macromolecules 2018;51:5430–9.

    Article  ADS  CAS  Google Scholar 

  27. Tromp DS, Lankelma M, de Valk H, de Josselin de Jong E, de Bruin B. Aqueous phase separation behavior of highly syndiotactic, high molecular weight polymers with densely packed hydroxy-containing side groups. Macromolecules 2018;51:7248–56.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Sun Y, Chen J, Wu Z, Cheng P, Li Q, et al. Enhanced fluorescence quantum yield of syndiotactic side-chain TPE polymers via Rh-catalyzed carbene polymerization: influence of the substitution density and spacer length. Polym Chem. 2019;10:1575–84.

    Article  Google Scholar 

  29. Li X, Mu B, Chen C, Chen J, Liu J, Liu F, et al. Significantly enhanced thermotropic liquid crystalline columnarmesophases in stereoregular polymethylenes with discotictriphenylene side groups. Macromolecules. 2019;52:6913–26.

    Article  ADS  CAS  Google Scholar 

  30. Shimomoto H, Yamada T, Itoh T, Ihara E. Carbon-carbon main chain polymer with accumulated oligo(ethylene glycol)-substituted cyclotriphosphazenes: Study on the LCST-type phase separation of organic-inorganic poly(substituted methylene)s. Polym J. 2020;52:51–6.

    Article  CAS  Google Scholar 

  31. Shimomoto H, Hohsaki R, Hiramatsu D, Itoh T, Ihara E. Pd-Initiated polymerization of dendron-containing diazoacetates to afford dendronized poly(substituted methylene)s with narrow molecular weight distribution and its application to synthesis of ph-responsive dendronized polymers. Macromolecules 2020;53:6369–79.

    Article  ADS  CAS  Google Scholar 

  32. Shimomoto H, Katashima I, Murakami H, Itoh T, Ihara E. Effect of the alkyl side-chain structure on melting point of atactic poly(alkoxycarbonylmethylene)s: incorporation of amide-linkage leading to polymers with high melting point. Macromolecules 2023;56:4639–48.

    Article  ADS  CAS  Google Scholar 

  33. Franssen NMG, Ensing B, Hegde M, Dingemans TJ, Norder B, Picken SJ, et al. On the “Tertiary Structure” of poly-carbenes; self-assembly of sp3-carbon-based polymers into liquid-crystalline aggregates. Chem Eur J. 2013;19:11577–89.

    Article  CAS  PubMed  Google Scholar 

  34. Shimomoto H, Asano H, Itoh T, Ihara E. Pd-initiated controlled polymerization of diazoacetates with a bulky substituent: synthesis of well-defined homopolymers and block copolymers with narrow molecular weight distribution from cyclophosphazene-containing diazoacetates. Polym Chem. 2015;6:4709–14.

    Article  CAS  Google Scholar 

  35. Kato F, Chandra A, Tokita M, Asano H, Shimomoto H, Ihara E, et al. Self-Assembly of hierarchical structures using Cyclotriphosphazene-containing poly(substituted methylene) block copolymers. ACS Macro Lett. 2018;7:37–41.

    Article  CAS  PubMed  Google Scholar 

  36. Chu J-H, Xu X-H, Kang S-M, Liu N, Wu Z-Q. Fast living polymerization and helix-sense-selective polymerization of diazoacetates using air-stable Palladium(II) Catalysts. J Am Chem Soc. 2018;140:17773–81.

    Article  CAS  PubMed  Google Scholar 

  37. Zhukhovitskiy AV, Kobylianskii IJ, Thomas AA, Evans AM, Delaney CP, Flanders NC, et al. A dinuclear mechanism implicated in controlled carbene polymerization. J Am Chem Soc. 2019;141:6473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li N-N, Li X-L, Xu L, Liu N, Wu Z-Q. Highly enantioselective and helix-sense-controlled synthesis of stereoregular helical polycarbenes using Chiral Palladium(II) catalysts. Macromolecules 2019;52:7260–6.

    Article  ADS  CAS  Google Scholar 

  39. Wang M-Q, Zou H, Liu W-B, Liu N, Wu Z-Q. Bottlebrush polymers based on RAFT and the “C1” Polymerization method: controlled synthesis and application in anticancer drug delivery. ACS Macro Lett. 2022;11:179–85.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Xu L, Song X, Kang S-M, Liu N, Wu Z-Q. Nickel(II)-catalyzed living polymerization of diazoacetates toward polycarbene homopolymer and polythiophene-block-polycarbene copolymers. Nat Commun. 2022;13:811.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C, Zhou L, Zhu Y-Y, Liu N, Wu Z-Q. Tuning the emission and lighting the circularly polarized luminescence of polyfluorene by incorporating a non-emissive polycarbene. Polym Chem. 2023;14:1135–40.

    Article  CAS  Google Scholar 

  42. Shimomoto H, Tsunematsu S, Itoh T, Ihara E. Reactivity of poly(alkoxycarbonylmethylene)s under basic conditions: alkylation of main chain carbon atoms via a ketene silyl acetal-type intermediate and cleavage of the carbon–carbon main chain. Polym Chem. 2021;12:689–701.

    Article  CAS  Google Scholar 

  43. Ihara E, Akazawa M, Itoh T, Fujii M, Yamashita K, Inoue K, et al. π‑AllylPdCl-based initiating systems for polymerization of alkyl diazoacetates: initiation and termination mechanism based on analysis of polymer chain end structures. Macromolecules 2012;45:6869–77.

    Article  ADS  CAS  Google Scholar 

  44. Kita Y, Tamura O, Tamura Y. Ketene silyl acetals in organic synthesis. Yuki Gosei Kagaku Kyokaishi. 1986;44:1118–33.

    Article  CAS  Google Scholar 

  45. Fuchise K, Chen Y, Satoh T, Kakuchi T. Recent progress in organocatalytic group transfer polymerization. Polym Chem 2013;4:4278–91.

    Article  CAS  Google Scholar 

  46. Chen J, Gowda RR, He J, Zhang Y, Chen EYX. Controlled or high-speed group transfer polymerization by silyl ketene acetals without catalyst. Macromolecules. 2016;49:8075–87.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Numbers JP18H02021, JP19K05586, JP19K22219, JP21H01988, and JP22K05219). The authors thank the Advanced Research Support Center (ADRES) at Ehime University for its assistance in NMR measurements and elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroaki Shimomoto or Eiji Ihara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimomoto, H., Inouchi, S., Itoh, T. et al. Postpolymerization modification of poly(2-alkoxyethoxycarbonylmethylene)s: Efficient formation and reactivity of the ketene silyl acetal repeating units in the polymer main chain. Polym J (2024). https://doi.org/10.1038/s41428-024-00891-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00891-z

Search

Quick links