Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conformations of hydrogenated ring-opened poly(norbornene)s in dilute solution

Abstract

The characteristic ratios C of syndiotactic, isotactic, and atactic hydrogenated ring-opened poly(norbornene)s, H-poly(NB)s, were determined in 1,2,4-trichlorobenzene (TCB) at 140 °C with molecular dynamics simulations and size exclusion chromatography with a multiangle light-scattering online detector (SEC-MALS). The C results were 11, 14 and 12 for syndiotactic, isotactic and atactic H-poly(NB), respectively, all of which were consistent with the rotational isomeric state model. These C values for H-poly(NB)s were definitely larger than those for polyethylene and syndiotactic and isotactic polypropylenes. The stiffness of the H-poly(NB) chains was induced by the internal rotations of two main-chain bonds included in the cyclopentane ring in each H-poly(NB) repeat unit, which were restricted near the trans conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayano S, Kurakata H, Tsunogae Y, Nakayama Y, Sato Y, Yasuda H. Stereospecific ring-opening metathesis polymerization of cycloolefins using novel molybdenum and tungsten complexes having biphenolate ligands. Development of crystalline hydrogenated Poly(endo-dicyclopentadiene) and Poly(norbornene). Macromolecules. 2003;36:7422–31.

    Article  ADS  CAS  Google Scholar 

  2. Hayano S, Nakama Y. Iso-and Syndio-Selective ROMP of norbornene and tetracyclododecene: effects of tacticity control on the hydrogenated ring-opened Poly(cycloolefin)s. Macromolecules. 2014;47:7797–7811.

    Article  ADS  CAS  Google Scholar 

  3. Yamazaki M. Industrialization and application development of cyclo-olefin polymer. J Mol Catal A: Chem. 2004;213:81–87.

    Article  CAS  Google Scholar 

  4. Kohara T. Development of new cyclic olefin polymers for optical uses. Macromol Symp. 1996;101:571–579.

    Article  CAS  Google Scholar 

  5. Nunes PS, Ohlsson PD, Ordeig O, Kutter JP. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluidics Nanofluidics. 2010;9:145–61.

    Article  CAS  Google Scholar 

  6. Maruno T, Watanabe H, Yoneda S, Uchihashi T, Adachi S, Arai K, et al. Sweeping of adsorbed therapeutic protein on prefillable syringes promotes micron aggregate generation. J Pharm Sci. 2018;107:1521–9.

    Article  CAS  PubMed  Google Scholar 

  7. Yoneda S, Maruno T, Mori A, Hioki A, Nishiumi H, Okada R, et al. Influence of protein adsorption on aggregation in prefilled. Syringes J Pharm Sci 2021;110:3568–79.

    Article  CAS  PubMed  Google Scholar 

  8. Nakama Y, Hayano S, Tashiro K. Influence of tacticity on the crystal structures of hydrogenated ring-opened Poly (norbornene)s. Macromolecules. 2021;54:8122–8134.

    Article  ADS  CAS  Google Scholar 

  9. Kafle N, Makita Y, Zheng Y, Schwarz D, Kurosu H, Pan P, et al. Roles of conformational flexibility in the crystallization of stereoirregular polymers. Macromolecules. 2021;54:5705–5718.

    Article  ADS  CAS  Google Scholar 

  10. Mays J, Hadjichristidis N, Fetters LJ. Characteristic ratios of model polydienes and polyolefins. Macromolecules. 1984;17:2723–8.

    Article  ADS  CAS  Google Scholar 

  11. Hattam P, Gauntlett S, Mays JW, Hadjichristidis N, Young RN, Fetters LJ. Conformational characteristics of some model polydienes and polyolefins. Macromolecules. 1991;24:6199–209.

    Article  ADS  CAS  Google Scholar 

  12. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules. 1994;27:4639–47.

    Article  ADS  CAS  Google Scholar 

  13. Fetters LJ, Lohse DJ, Graessley WW. Chain dimensions and entanglement spacings in dense macromolecular systems. J Polym Sci: Part B: Polym Phys. 1999;37:1023–33.

    Article  ADS  CAS  Google Scholar 

  14. Fetters LJ, Lohse DJ, Garcia-Franco CA, Brant P, Richter D. Prediction of melt state Poly(α-olefin) rheological properties: the unsuspected role of the average molecular weight per backbone bond. Macromolecules. 2002;35:10096–101.

    Article  ADS  CAS  Google Scholar 

  15. Flory, PJ Statistical Mechanics of Chain Molecules; Wiley: New York, 1969.

  16. Mattice, WL; Suter, UW Conformational Theory of Large Molecules. Wiley-Interscience, New York, 1994

  17. MacRury TB, McConnell ML. Measurement of the absolute molecular weight and molecular weight distribution of polyolefins using low-angle laser light scattering. J Appl Polym Sci. 1979;24:651–62.

    Article  CAS  Google Scholar 

  18. Grinshpun, V; O’Driscoll, KF; Rudin, A, High-Temperature Size Exclusion Chromatography of Polyethylene. In Size Exclusion Chromatography, American Chemical Society: 1984; Vol. 245, pp 273-80.

  19. Sun T, Brant P, Chance RR, Graessley WW. Effect of short chain branching on the coil dimensions of polyolefins in dilute solution. Macromolecules. 2000;34:6812–20.

    Article  ADS  Google Scholar 

  20. Brant P, Ruff CJ, Sun T. Effect of tacticity on the dilute solution coil dimensions of Poly(α-olefin)s. Macromolecules. 2005;38:7181–3.

    Article  ADS  CAS  Google Scholar 

  21. Debye P. Molecular-weight determination by light scattering. J Phys Colloid Chem. 1947;51:18–32.

    Article  CAS  PubMed  Google Scholar 

  22. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101.

    Article  ADS  PubMed  Google Scholar 

  23. Hess B. P-LINCS:  a parallel linear constraint solver for molecular simulation. J Chem Theor Comput. 2008;4:116–22.

    Article  CAS  Google Scholar 

  24. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.

    Article  CAS  Google Scholar 

  25. Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.

    Article  ADS  Google Scholar 

  26. Hamidi N, Ganewatta MS. Influence of the rosin pendant groups on the solution properties of a high molecular weight hydrogenated polynorbornene. Polymer. 2021;232:124167.

    Article  CAS  Google Scholar 

  27. Yamakawa, H; Yoshizaki, T Helical Wormlike Chains in Polymer Solutions. 2nd ed. Springer, Heidelberg; 2015.

  28. Benoit H, Doty P. Light scattering from non-gaussian chains. J Phys Chem. 1953;57:958–63.

    Article  CAS  Google Scholar 

  29. Domb C, Barrett AJ. Universality approach to the expansion factor of a polymer chain. Polymer. 1976;17:179–84.

    Article  CAS  Google Scholar 

  30. Norisuye T, Fujita H. Excluded volume effects in dilute polymer solutions. XIII. Effects of chain stiffness. Polym J 1982;14:143–7.

    Article  CAS  Google Scholar 

  31. Yamakawa, H Modern Theory of Polymer Solutions. Harper & Row, New York; 1971.

  32. Flory, PJ Principles of Polymer Chemistry. Cornell Univ. Press, Ithaca, New York; 1953.

  33. Sato T, Terao K, Teramoto A, Fujiki M. Molecular properties of helical polysilylenes in solution. Polymer. 2003;44:5477–95.

    Article  CAS  Google Scholar 

  34. Yun SI, Terao K, Hong K, Melnichenko YB, Wignall GD, Britt PF, et al. Solution properties of 1,3-Cyclohexadiene polymers by laser light scattering and small-angle neutron scattering. Macromolecules. 2006;39:897–9.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Yoshinori Matsumoto (Tosoh Analytical Technology Center) for his cooperation in SEC-MALS measurements.

Author information

Authors and Affiliations

Authors

Contributions

YN and TS planned and directed the project; SH synthesized the samples; YN conducted the experiments. SN conducted MD simulations; TS formulated the theory; YN and TS analyzed the SEC-MALS data and calculated the characteristic ratios on the basis of the RIS model. YN, SN and TS wrote the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Takahiro Sato.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakama, Y., Natori, S., Hayano, S. et al. Conformations of hydrogenated ring-opened poly(norbornene)s in dilute solution. Polym J 56, 153–161 (2024). https://doi.org/10.1038/s41428-023-00852-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00852-y

Search

Quick links