Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dilute solution properties of poly(d,l-lactide) by static light scattering, SAXS, and intrinsic viscosity

Abstract

The dilute solution properties of poly(d,l-lactide)s (PDL50) with a weight-averaged molar mass (Mw) ranging from 0.154 × 104 to 75.7 × 104 g mol−1 are thoroughly studied in tetrahydrofuran at 25 °C by static light and small-angle X-ray scattering and intrinsic viscosity ([η]) measurements. Fourteen PDL50 samples with a narrow molar mass distribution are synthesized at 150 °C by ring-opening copolymerization of a 1:1 mixture of d-lactide and l-lactide with benzyl alcohol as an initiator and tin(II) dichloride dihydrate as the catalyst, followed by fractionation using recycling preparative size exclusion chromatography. The Mw dependences of the z-averaged root-mean-square radius of gyration (〈S2z1/2) and [η] are rationalized and analyzed based on the cylindrical wormlike chain model. The experimental Mw dependence of 〈S2z1/2 is quantitatively described by the wormlike cylinder with stiffness parameter λ−1 = 2.9 nm, molar mass per unit contour length ML = 270 ± 20 g mol−1 nm−1, protruding effects at both ends δ = 0.4 nm, and excluded-volume strength B = 0.31 ± 0.07 nm. The experimental Mw dependence of [η] and the scattering form factor P(q) are also consistently expressed by the current theories with the same model parameters. The results indicate that the PDL50 chain behaves as a typical flexible polymer but is essentially 1.6−2.1 times stiffer than the representative vinyl polymers, polystyrene (λ−1 = 1.8 nm) and poly(methyl methacrylate) (λ−1 = 1.4 nm), most likely due to the planar feature of the ester linkage, which partially constrains the free rotation of the main chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782

    Article  Google Scholar 

  2. Ellen MacArthur Foundation and World Economic Forum. The new plastics economy: rethinking the future of plastics. World Economic Forum. 2016; 1‒35. http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.

  3. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater. 2000;12:1841–6.

    Article  CAS  Google Scholar 

  4. Luckachan GE, Pillai CKS. Biodegradable polymers: a review on recent trends and emerging perspectives. J Polym Environ. 2011;19:637–76.

    Article  CAS  Google Scholar 

  5. Perego G, Cella GD, Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci. 1996;59:37–43.

    Article  CAS  Google Scholar 

  6. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27:1123–63.

    Article  Google Scholar 

  7. Lim L-T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  8. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review. Adv Drug Delivery Rev. 2016;107:367–92.

    Article  CAS  Google Scholar 

  9. Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci. 2005;5:569–97.

    Article  CAS  Google Scholar 

  10. Tonelli AE, Flory PJ. The configuration statistics of random poly(lactic acid) chains. I. Experimental results. Macromolecules. 1969;2:225–7.

    Article  CAS  Google Scholar 

  11. Shindler A, Harper D. Polylactide. II. Viscosity-molecular weight relationships and unperturbed chain dimensions. J Polym Sci, Polym Chem Ed. 1979;17:2593–9.

    Article  Google Scholar 

  12. Malmgren T, Mays J, Pyda M. Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J Therm Ana Calorim. 2006;83:35–40.

    Article  CAS  Google Scholar 

  13. Michalski A, Lapienis G. Synthesis and characterization of high-molar-mass star-shaped poly(l-lactide)s. Polimery. 2018;63:488–94.

    Article  CAS  Google Scholar 

  14. Kim SH, Han Y-K, Ahn K-D, Kim YH, Chang T. Preparation of star-shaped polylactide with pentaerythritol and stannous octoate. Makromol Chem. 1993;194:3229–36.

    Article  CAS  Google Scholar 

  15. Saito Y, Izuta D, Kaneko N, Togashi D, Narumi A, Kawaguchi S. Molecular characterization of poly(l-lactic acid) isolated chain. Kobunshi Ronbunshu. 2012;69:416–23.

    Article  CAS  Google Scholar 

  16. Lee JS, Lee HK, Kim SC. Thermodynamic parameters of poly(lactic acid) solutions in dialkyl phthalate. Polymer. 2004;45:4491–8.

    Article  CAS  Google Scholar 

  17. Pavlov GM, Dommes OA, Aver’yanov IV, Kolbina GF, Okatova OV, Korzhikov VA. et al. Conformational differences of poly(l-lactic acid) and poly(d,l-lactic acid) in dilute solutions. Doklady Chem. 2015;465:261–4.

    Article  CAS  Google Scholar 

  18. Pavlov GM, Aver’yanov IV, Kolomiets IP, Kolbina GF, Dommes OA, Okatova OV. et al. Conformational features of poly-l- and poly-d,l-lactides through molecular optics and hydrodynamics. Eur Polym J. 2017;89:324–38.

    Article  CAS  Google Scholar 

  19. van Dijk JAPP, Smit JAM, Kohn FE, Feijen J. Characterization of poly(d,l-lactic acid) by gel permeation chromatography. J Polym Sci Polym Chem Ed. 1983;21:197–208.

    Article  Google Scholar 

  20. Dorgan JR, Janzen J, Knauss DM, Hait SB, Limoges BR, Hutchinson MH. Fundamental solution and single-chain properties of polylactides. J Polym Sci B Polym Phys. 2005;43:3100–11.

    Article  CAS  Google Scholar 

  21. Othman N, Acosta-Ramírez A, Mehrkhodavandi P, Dorgan JR, Hatzikiriakos SG. Solution and melt viscoelastic properties of controlled microstructure poly(lactide). J Rheol. 2011;55:987–1004.

    Article  CAS  Google Scholar 

  22. Joziasse CAP, Veenstra H, Grijpma DW, Pennings AJ. On the chain stiffness of poly(lactide)s. Macromol. Chem Phys. 1996;197:2219–29.

    CAS  Google Scholar 

  23. Kang S, Zhang G, Aou K, Hsu SL, Stidham HD, Yang X. An analysis of poly(lactic acid) with varying regio regularity. J Chem Phys. 2003;118:3430–6.

    Article  CAS  Google Scholar 

  24. Sasanuma Y, Touge D. Configurational statistics of poly(l-lactide) and poly(dl-lactide) chains. Polymer. 2014;55:1901–11.

    Article  CAS  Google Scholar 

  25. Kikuchi M, Nakano R, Jinbo Y, Saito Y, Ohno S, Togashi D. et al. Graft density dependence of main chain stiffness in molecular rod brushes. Macromolecules. 2015;48:5878–86.

    Article  CAS  Google Scholar 

  26. Fetters LJ, Hadjichristidis N, Lindner JS, Mays JW. Molecular weight dependence of hydrodynamic and thermodynamic properties of well-defined linear polymers in solution. J Phys Chem Ref Data. 1994;23:619–39.

    Article  CAS  Google Scholar 

  27. Kikuchi M, Saito Y, Narumi A, Kawaguchi S. Backbone stiffness of rod brushes. Kobunshi Ronbunshu. 2014;74:64–74.

    Article  Google Scholar 

  28. Bero M, Kasperczyk J, Jedlinki ZJ. Coordination polymerization of lactides, 1 structure determination of obtained polymers. Makromol Chem. 1990;191:2287–96.

    Article  CAS  Google Scholar 

  29. Konishi T, Yoshizaki T, Saito T, Einaga Y, Yamakawa H. Mean-square radius of gyration of oligo- and polystyrenes in dilute solutions. Macromolecules. 1990;23:290–7.

    Article  CAS  Google Scholar 

  30. Benoit H, Doty P. Light scattering from non-Gaussian chains. J Phys Chem. 1953;57:958–63.

    Article  CAS  Google Scholar 

  31. Nagasaka K, Yoshizaki T, Shimada J, Yamakawa H. More on the scattering function of helical wormlike chains. Macromolecules. 1991;24:924–31.

    Article  CAS  Google Scholar 

  32. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G. Crystal structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules. 1990;23:634–42.

    Article  CAS  Google Scholar 

  33. Yoshizaki T, Nitta I, Yamakawa H. Transport coefficients of helical wormlike chains. 4. Intrinsic viscosity of the touched-bead model. Macromolecules. 1988;21:165–71.

    Article  CAS  Google Scholar 

  34. Yoshizaki T, Yamakawa H. Scattering functions of wormlike and helical wormlike chains. Macromolecules. 1980;13:1518–25.

    Article  CAS  Google Scholar 

  35. Fujii Y, Tamai Y, Konishi T, Yamakawa H. Intrinsic viscosity of oligo- and poly(methyl methacrylate)s. Macromolecules. 1991;24:1608–14.

    Article  CAS  Google Scholar 

  36. Ren J, Urakawa O, Adachi K. Dielectric study on dynamics and conformation of poly(d,l-lactic acid) in dilute and semi-dilute solutions. Polymer. 2003;44:847–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moriya Kikuchi or Seigou Kawaguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y., Watanabe, T., Kosugi, H. et al. Dilute solution properties of poly(d,l-lactide) by static light scattering, SAXS, and intrinsic viscosity. Polym J 52, 387–396 (2020). https://doi.org/10.1038/s41428-019-0293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0293-1

Search

Quick links