Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation and distorted cylindrical morphology of block copolymers consisting of flexible and semiflexible blocks

Abstract

Diblock copolymers consisting of flexible polystyrene and semiflexible poly(n-hexyl isocyanate), P(S-b-HIC)s, were prepared by anionic polymerization, followed by size-exclusion chromatography (SEC) fractionation. Two P(S-b-HIC) samples having PHIC volume fractions (ΦPHIC) of 0.18 and 0.31, sufficiently high molecular weights (Mn,PS and Mn,PHIC are both larger than 10 kg/mol), and narrow molecular weight distributions (Mw/Mn < 1.05) were obtained. The microphase-separated structures of the two P(S-b-HIC) samples were investigated by transmission electron microscopy (TEM) and small- and wide-angle X-ray scattering (SAXS and WAXS). TEM and SAXS show that both the P(S-b-HIC) samples exhibit hexagonally packed cylindrical structures but different cross-sectional shapes; namely, P(S-b-HIC)-0.18 has a round-shaped cross-section while P(S-b-HIC)-0.31 has a distorted cross-section. From the WAXS measurements, P(S-b-HIC)-0.31 exhibits a sharp peak at q* = 3.9 nm−1, which is different from that of a nematic PHIC homopolymer that has a peak at q* = 4.6 nm−1. These results indicate that the PHIC blocks in P(S-b-HIC)-0.31 align obliquely to the interface in the columnar domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leibler L. Theory of microphase separation in block copolymers. Macromolecules. 1980;13:1602–17.

    Article  CAS  Google Scholar 

  2. Bates FS, Fredrickson GH. Block copolymer thermodynamics: theory and experiments. Annu Rev Phys Chem. 1990;41:525–57.

    Article  CAS  Google Scholar 

  3. Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett. 1994;72:2660–3.

    Article  CAS  Google Scholar 

  4. Hamley, IW. The physics of block copolymers. Oxford: Oxford University Press; 1998.

  5. Halperin A. Rod-coil copolymers: their aggregation behavior. Macromolecules. 1990;23:2724–31.

    Article  CAS  Google Scholar 

  6. Singh C, Goulian M, Liu AJ, Fredrickson GH. Phase behavior of semiflexible diblock copolymers. Macromolecules. 1994;27:2974–86.

    Article  CAS  Google Scholar 

  7. Matsen MW, Barrett C. Liquid-crystalline behavior of rod-coil diblock copolymers. J Chem Phys. 1998;109:4108–18.

    Article  CAS  Google Scholar 

  8. Reenders M, ten Brinke G. Compositional and orientational ordering in rod-coil diblock copolymer melt. Macromolecules. 2002;35:3266–80.

    Article  CAS  Google Scholar 

  9. Motoyama M, Yamazaki N, Nonomura M, Ohta T. Morphology of microphase separated domains in rod-coil copolymer melts. J Chem Phys. 2004;120:3949–56.

    Article  Google Scholar 

  10. Pryamitsyn V, Ganesan V. Self-assembly of rod-coil block copolymers. J Chem Phys. 2004;120:5824–38.

    Article  CAS  Google Scholar 

  11. Song W, Tang P, Qiu F, Yang Y, Shi AC. Phase behavior of semiflexible-coil diblock copolymers: a hybrid numerical SCFT approach. Soft Matter. 2011;7:929–38.

    Article  CAS  Google Scholar 

  12. Tang J, Jiang Y, Zhang X, Yan D, Chen JZY. Phase diagram of rod-coil diblock copolymer melts. Macromolecules. 2015;48:9060–70.

    Article  CAS  Google Scholar 

  13. Radzilowski LH, Stupp SI. Nanophase separation in monodisperse rodcoil diblock polymers. Macromolecules. 1994;27:7747–53.

    Article  CAS  Google Scholar 

  14. Radzilowski LH, Carragher BO, Stupp SI. Three-dimensional self-assembly of rodcoil copolymer nanostructures. Macromolecules. 1997;30:2110–9.

    Article  CAS  Google Scholar 

  15. Chen JT, Thomas EL, Ober CK, Hwang SS. Zigzag morphology of a poly(styrene-b-hexyl isocyanate) rod-coil block copolymer. Macromolecules. 1995;28:1688–97.

    Article  CAS  Google Scholar 

  16. Chen JT, Thomas EL, Ober CK, Mao GP. Self-assembled smectic phases in rod-coil block copolymers. Science. 1996;273:343–6.

    Article  CAS  Google Scholar 

  17. Olsen BD, Segalman RA. Structure and thermodynamics of weakly segregated rod-coil block copolymers. Macromolecules. 2005;38:10127–37.

    Article  CAS  Google Scholar 

  18. Olsen BD, Segalman RA. Phase transition in asymmetric rod-coil block copolymers. Macromolecules. 2006;39:7078–83.

    Article  CAS  Google Scholar 

  19. Olsen BD, Segalman RA. Nonlamellar phases in asymmetric rod-coil block copolymers at increased segregation strengths. Macromolecules. 2007;40:6922–9.

    Article  CAS  Google Scholar 

  20. Sary N, Brochon C, Hadziioannou G, Mezzenga R. Self-assembly of rod-coil copolymers from weakly to moderately segregated regimes. Eur Phys J E. 2007;24:379–84.

    Article  CAS  Google Scholar 

  21. Sary N, Rubatat L, Brochon C, Hadziioannou G, Ruokolainen J, Mezzenga R. Self-assembly of poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(4-vinylprydine) rod-coil block copolymer systems. Macromolecules. 2007;40:6990–7.

    Article  CAS  Google Scholar 

  22. Bur AJ, Fetters LJ. The chain structure, polymerization, and conformation of polyisocyanates. Chem Rev. 1976;76:727–46.

    Article  CAS  Google Scholar 

  23. Sato T, Teramoto A. Concentrated solutions of liquid-crystalline polymers. Adv Polym Sci. 1996;126:85–161.

    Article  CAS  Google Scholar 

  24. Takada S, Itou T, Chikiri H, Einaga Y, Teramoto A. Dielectric dispersion of narrow-distribution poly(hexyl isocyanate) in dilute solution. Macromolecules. 1989;22:973–9.

    Article  CAS  Google Scholar 

  25. Yang IK, Shine AD. Electrorheology of a nematic poly(n-hexyl isocyanate) solution. J Rheol 1992;36:1079–104.

    Article  CAS  Google Scholar 

  26. Tse KL, Shine AD. Steady-state electrorheology of nematic poly(n-hexyl isocyanate) solutions. Macromolecules. 2000;33:3134–41.

    Article  CAS  Google Scholar 

  27. Stockmeyer WH. Dielectric dispersion in solutions of flexible polymers. Pure Appl Chem. 1967;15:539–54.

    Article  Google Scholar 

  28. Shin YD, Kim SY, Ahn JH, Lee JS. Synthesis of poly(n-hexyl isocyanate) by controlled anionic polymerization in the presence of NaBPh4. Macromolecules. 2001;34:2408–10.

    Article  CAS  Google Scholar 

  29. Chae CG, Seo HB, Lee JS. Living anionic polymerization of isocyanates. In: Hadjichristidis N, Hirao A, editors. Anionic polymerization. Japan: Springer; 2015.

  30. Shin YD, Han SH, Samal S, Lee JS. Synthesis of poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) amphiphilic coil-rod block copolymer by anionic polymerization. J Polym Sci, Part A: Polym Chem. 2005;43:607–15.

    Article  CAS  Google Scholar 

  31. Ahn JH, Shin YD, Kim SY, Lee JS. Synthesis of well-defined block copolymers of n-hexyl isocyanate with isoprene by living anionic. Polymerization Polym. 2003;44:3847–54.

    Article  CAS  Google Scholar 

  32. Matsushita Y, Shimizu K, Nakao Y, Choshi H, Noda I, Nagasawa M. Preparation and characterization of poly(2-vinylpyridine) with narrow molecular weight distributions. Polym J 1986;18:361–6.

    Article  CAS  Google Scholar 

  33. Mogi Y, Kotsuji H, Kaneko Y, Mori K, Matsushita Y, Noda I. Preparation and morphology of triblock copolymers of ABC type. Macromolecules. 1992;25:5408–11.

    Article  CAS  Google Scholar 

  34. Watanabe M, Asai Y, Takano A, Matsushita Y. Preparation and characterization of AB6 block-graft copolymers. J Polym Sci, Part B: Polym Phys. 2019;57:952–60.

    Article  CAS  Google Scholar 

  35. Lien LTN, Kikuchi M, Narumi A, Nagai K, Kawaguchi S. Preparation of α-, ω-End-Functionalized Poly(n-hexyl isocyanate) Heterotelechelics. Polym J. 2008;40:1105–12.

    Article  CAS  Google Scholar 

  36. Doi Y, Ohta Y, Nakamura M, Takano A, Takahashi Y, Matsushita Y. Precise synthesis and characterization of tadpole-shaped polystyrenes with high purity. Macromolecules. 2013;46:1075–81.

    Article  CAS  Google Scholar 

  37. Aharoni SM. Rigid backbone polymers. 2. Polyisocyanates and their liquid-crystal behavior. Macromolecules. 1979;12:94–103.

    Article  CAS  Google Scholar 

  38. Asai Y, Suzuki J, Aoyama Y, Nishioka H, Takano A, Matsushita Y. Tricontinuous double diamond network structure from binary blends of ABC triblock terpolymers. Macromolecules. 2017;50:5402–11.

    Article  CAS  Google Scholar 

  39. Dobrosielska K, Wakao S, Suzuki J, Noda K, Takano A, Matsushita Y. Effect of homopolymer molecular weight on nanophase-separated structures of AB block copolymer/C homopolymer blends with hydrogen-bonding interactions. Macromolecules. 2009;42:7098–102.

    Article  CAS  Google Scholar 

  40. Gao J, Song W, Tang P, Yang Y. Self-assembly of semiflexible block copolymers: 2D numerical implementation of self-consistent field theory. Soft Matter. 2011;7:5208–16.

    Article  CAS  Google Scholar 

  41. Gao J, Tang P, Yang Y. Non-lamellae structures of coil-semiflexible diblock copolymers. Soft Matter. 2013;9:69–81.

    Article  CAS  Google Scholar 

  42. Li S, Jiang Y, Chen JZY. Phase transition in semiflexible-rod diblock copolymers: a self-consistent field theory. Soft Matter. 2014;10:8932–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SAXS measurements were performed at BL-40B2 in Spring-8 (Proposal Nos. 2018B1103 and 2019A1278) with the support of Dr. Noboru Ohta at JASRI/Spring-8. The authors thank Mr. Tatsuo Hikage at Nagoya University for his help with the WAXS measurements conducted at the High-Intensity X-ray Diffraction Laboratory in Nagoya University. The authors also acknowledge Prof. Seigo Kawaguchi at Yamagata University, Dr. Jiro Suzuki at KEK, Dr. Takashi Uneyama at Nagoya University, and Dr. Mikihiro Hayashi at Nagoya Institute of Technology for their helpful discussion. This work was financially supported by JSPS KAKENHI Grant Number 16H02292 (for Y.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuya Doi or Yushu Matsushita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doi, Y., Takano, A. & Matsushita, Y. Preparation and distorted cylindrical morphology of block copolymers consisting of flexible and semiflexible blocks. Polym J 53, 1361–1369 (2021). https://doi.org/10.1038/s41428-021-00530-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00530-x

This article is cited by

Search

Quick links