Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Facile construction of giant polymeric chains through strain-promoted azide-alkyne cycloaddition

Abstract

Rational design of “giant” building blocks promotes the modular construction of polymeric counterparts at a large length scale. In this study, a series of biscylooctyne- and bisazide-functionalized polyhedral oligomeric silsesquioxane (POSS) monomers with different regio-configurations were synthesized. Homo and alternating giant polymeric chains were then efficiently prepared by strain-promoted azide-alkyne cycloaddition (SPAAC) polymerization. The obtained monomers and polymers were characterized by proton nuclear magnetic resonance (1H NMR), size exclusion chromatography (SEC), and matrix-assisted laser desorption ionization time-of-flight (MALDI-ToF) mass spectrometry. The influence of the feeding ratio, monomer concentration, and regio-configuration on the step-growth polymerization was investigated. Due to the large monomer size, the giant chains can be purified and fractionated by preparative SEC. This work provides a facile and efficient approach for the modular construction of main-chain polymers with nanosized building blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Flory PJ, Volkenstein M. Statistical mechanics of chain molecules. Biopolymers. 1969;8:699–700.

    Article  Google Scholar 

  2. Reches M, Snyder PW, Whitesides GM. Folding of electrostatically charged beads-on-a-string as an experimental realization of a theoretical model in polymer science. Proc Natl Acad Sci USA. 2009;106:17644 https://doi.org/10.1073/pnas.0905533106.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A, et al. Supramolecular hemoprotein linear assembly by successive interprotein heme−heme pocket interactions. J Am Chem Soc. 2007;129:10326–7. https://doi.org/10.1021/ja073295q.

    Article  CAS  PubMed  Google Scholar 

  4. Zou L-N, Cheng X, Rivers ML, Jaeger HM, Nagel SR. The packing of granular polymer chains. Science. 2009;326:408–10. https://doi.org/10.1126/science.1177114.

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E. Step-growth polymerization of inorganic nanoparticles. Science. 2010;329:197–200. https://doi.org/10.1126/science.1189457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macdonell A, Johnson NAB, Surman AJ, Cronin L. Configurable nanosized metal oxide oligomers via precise “Click” coupling control of hybrid polyoxometalates. J Am Chem Soc. 2015;137:5662–5. https://doi.org/10.1021/jacs.5b02466.

    Article  CAS  PubMed  Google Scholar 

  7. Wu D, Sinha N, Lee J, Sutherland BP, Halaszynski NI, Tian Y, et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature. 2019;574:658–62. https://doi.org/10.1038/s41586-019-1683-4.

    Article  CAS  PubMed  Google Scholar 

  8. Lin Z, Xiong Y, Xiang S, Gang O. Controllable covalent-bound nanoarchitectures from DNA frames. J Am Chem Soc. 2019;141:6797–801. https://doi.org/10.1021/jacs.9b01510.

    Article  CAS  PubMed  Google Scholar 

  9. Duan H, Yang Y, Zhang Y, Yi C, Nie Z, He J. What is next in polymer-grafted plasmonic nanoparticles? Giant. 2020;4:100033 https://doi.org/10.1016/j.giant.2020.100033.

    Article  Google Scholar 

  10. Liu Y, Liu T, Yan X, Guo Q-Y, Wang J, Zhang R, et al. Mesoatom alloys via self-sorting approach of giant molecules blends. Giant. 2020;4:100031 https://doi.org/10.1016/j.giant.2020.100031.

    Article  Google Scholar 

  11. Feng F, Guo D, Shao Y, Yan X, Yue K, Pan Z, et al. Thickness control of 2D nanosheets assembled from precise side-chain giant molecules. Chem Sci. 2021;12:5216–23. https://doi.org/10.1039/d1sc00021g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng F, Shao Y, Wu W, Li X, Hong C, Jin L, et al. Crystallization of precise side-chain giant molecules with tunable sequences and functionalities. Macromolecules. 2021;54:11093–11100. https://doi.org/10.1021/acs.macromol.1c01958.

    Article  CAS  Google Scholar 

  13. Tricard S, Feinstein E, Shepherd RF, Reches M, Snyder PW, Bandarage DC, et al. Analog modeling of worm-like chain molecules using macroscopic beads-on-a-string. Phys. Chem. Chem. Phys. 2012;14:9041–6. https://doi.org/10.1039/c2cp40593h.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W-B, Cheng SZD. Giant is different: size effects and the nature of macromolecules. Giant. 2020;1:100011 https://doi.org/10.1016/j.giant.2020.100011.

    Article  Google Scholar 

  15. Zhang W-B, Yu X, Wang C-L, Sun H-J, Hsieh I-F, Li Y, et al. Molecular nanoparticles are unique elements for macromolecular science: from “nanoatoms” to giant molecules. Macromolecules. 2014;47:1221–39. https://doi.org/10.1021/ma401724p.

    Article  CAS  Google Scholar 

  16. Liu Y, Liu G, Zhang W, Du C, Wesdemiotis C, Cheng SZD. Cooperative soft-cluster glass in giant molecular clusters. Macromolecules. 2019;52:4341–8. https://doi.org/10.1021/acs.macromol.9b00549.

    Article  CAS  Google Scholar 

  17. Zou Q, Zhu Y, Ruan Y, Zhang R, Liu G. Coarse-grained soft-clusters remain non-diffusing in the melt state. Giant. 2021;8:100070 https://doi.org/10.1016/j.giant.2021.100070.

    Article  CAS  Google Scholar 

  18. Zhu Y, Luo J, Zou Q, Ouyang X, Ruan Y, Liu Y, et al. Glassy feature in melts of 3-dimensional architectured polymer blends. Polymer. 2022;238:124336 https://doi.org/10.1016/j.polymer.2021.124336.

    Article  CAS  Google Scholar 

  19. Li Y, Dong X-H, Zou Y, Wang Z, Yue K, Huang M, et al. Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer. 2017;125:303–29. https://doi.org/10.1016/j.polymer.2017.08.008.

    Article  CAS  Google Scholar 

  20. Maegawa T, Irie Y, Imoto H, Fueno H, Tanaka K, Naka K. Para-bisvinylhexaisobutyl-substituted t8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem. 2015;6:7500–4. https://doi.org/10.1039/c5py01262g.

    Article  CAS  Google Scholar 

  21. Fujii S, Minami S, Urayama K, Suenaga Y, Naito H, Miyashita O, et al. Beads-on-string-shaped poly(azomethine) applicable for solution processing of bilayer devices using a same solvent. ACS Macro Lett. 2018;7:641–5. https://doi.org/10.1021/acsmacrolett.8b00271.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Yang Z, Chen X, Tan R, Li G, Gan Z, et al. Discrete giant polymeric chains based on nanosized monomers. JACS Au. 2021;1:79–86. https://doi.org/10.1021/jacsau.0c00014.

    Article  CAS  PubMed  Google Scholar 

  23. Li G, Gan Z, Liu Y, Wang S, Guo Q-Y, Liu Z, et al. Molecular patchy clusters with controllable symmetry breaking for structural engineering. ACS Nano. 2020;14:13816–23. https://doi.org/10.1021/acsnano.0c06189.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Chen X, Yang Z, Wang S, Gan Z, Li G, et al. Precise amphiphilic giant polymeric chain based on nanosized monomers with exact regio-configuration. ACS Nano. 2021;15:12367–74. https://doi.org/10.1021/acsnano.1c04486.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Wang S, Li G, Yang Z, Gan Z, Dong X-H. Discrete giant polymeric chain with precise sequence and regio-configuration: a concise multiblock model system. Macromolecules. 2022;55:5954–63. https://doi.org/10.1021/acs.macromol.2c00992.

    Article  CAS  Google Scholar 

  26. Liu Z, Wang S, Yang Z, Dong X. Regioisomeric giant triblock molecules: role of the linker. Macromol. Rapid Commun. 2023;44:2200509 https://doi.org/10.1002/marc.202200509.

    Article  CAS  Google Scholar 

  27. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001;40:2004–21. 10.1002/1521-3773(20010601)40:11<;2004::aid-anie2004>3.0.co;2-5

    Article  CAS  Google Scholar 

  28. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–7. https://doi.org/10.1021/ja044996f.

    Article  CAS  PubMed  Google Scholar 

  29. Lutz J. Copper‐free azide–alkyne cycloadditions: new insights and perspectives. Angew. Chem. Int. Ed. 2008;47:2182–4. https://doi.org/10.1002/anie.200705365.

    Article  CAS  Google Scholar 

  30. Han S-Y, Wang X-M, Shao Y, Guo Q-Y, Li Y, Zhang W-B. Janus POSS based on mixed [2:6] octakis-adduct regioisomers. Chem Eur J. 2016;22:6397–403. https://doi.org/10.1002/chem.201600579.

    Article  CAS  PubMed  Google Scholar 

  31. Chadwick R, Gyzen SV, Liogier S, Adronov A. Scalable synthesis of strained cyclooctyne derivatives. Synthesis. 2014;46:669–77. https://doi.org/10.1055/s-0033-1340509.

    Article  CAS  Google Scholar 

  32. Wu J-C, Wang D-X, Huang Z-T, Wang M-X. Synthesis of diverse N,O-bridged Calix[1]Arene[4]Pyridine-C60 dyads and triads and formation of intramolecular self-inclusion complexes. J Org Chem. 2010;75:8604–14. https://doi.org/10.1021/jo1019267.

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Tan R, Ma Z, Gan Z, Li G, Zhou D, et al. Discrete block copolymers with diverse architectures: resolving complex spherical phases with one monomer resolution. ACS Cent. Sci. 2020;6:1386–93. https://doi.org/10.1021/acscentsci.0c00798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shao Y, Yang S, Zhang W. Macromolecular isomerism in giant molecules. Chem Eur J. 2020;26:2985–92. https://doi.org/10.1002/chem.201904419.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22273026, 51773066, and 51890871), the Recruitment Program of Guangdong (2016ZT06C322), the Research Funds from State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University (SDGC2109), and the 111 Project (B18023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlin He or Xue-Hui Dong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, G., Liu, Z. et al. Facile construction of giant polymeric chains through strain-promoted azide-alkyne cycloaddition. Polym J 55, 1129–1139 (2023). https://doi.org/10.1038/s41428-023-00816-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00816-2

Search

Quick links