Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct observation of cyclic poly(N-substituted maleimide)s with broad size distributions synthesized by anionic polymerization using an N-heterocyclic carbene and successive ring closure without high dilutions

Abstract

The N-heterocyclic carbene 1,3-di-tert-butylimidazol-2-ylidene (NHCtBu) and its 1:1 adduct with methyl sorbate (MS) were found to initiate anionic polymerization of N-substituted maleimides (RMIs) in organic solvents at −20 °C to afford linear and cyclic poly(RMI)s, respectively. Quantitative monomer consumption was observed when a bulky aluminum Lewis acid, such as methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD), was used as an additive. In the presence of the NHCtBu:MS adduct as an initiator, monomer consumption was followed by ring closure without the need for highly diluted conditions to give cyclic poly(RMI)s containing α-terminal MS units, which exhibited an Mn of 3.4 × 103–6.2 × 103 and a broad polydispersity index (Mw/Mn = 2.43–2.65). Dilution was not required due to the presence of an α-terminal NHCtBu group, which acted as a counter cation for the propagating center during polymerization. The broad molecular weight distributions of the obtained polymers were ascribed to a chain transfer upon abstraction of the α-carbonyl proton of the RMIs, particularly to the neighboring NHCtBu cation unit. 1H NMR and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass analyses indicated that the proton transfer of the acidic proton was induced by the propagating anion. The topologies of the linear and cyclic poly(RMI)s were directly observed by transmission electron microscopy (TEM).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roovers J. In: Semlyen JA, editor. Cyclic polymers. 2nd ed. Dordrent: Kluwer Academic Publishers; 2000.

  2. Clarson SJ, Dodgson K, Semyen JA. Studies of cyclic and linear poly(dimethylsiloxanes): 19. Glass transition temperatures and crystallization behaviour. Polymer. 1985;26:930–4.

    Article  CAS  Google Scholar 

  3. Endo K. Synthesis and properties of cyclic polymers. Adv Polym Sci. 2008;217:121–83.

    CAS  Google Scholar 

  4. Deffieux A, Borsali R. In: Matyjazewski K, Gnanou Y, Liebler L, editors. Macromolecular engineering: precise synthesis, materials properties, applications. Weinheim: Wiley-VCH; 2007. Vol. 2, p. 875–908.

  5. Lee W, et al. Retention behavior of linear and ring polystyrene at the chromatographic critical condition. Macromolecules. 2002;35:529–38.

    Article  Google Scholar 

  6. Hosoi Y, Takasu A, Matsuoka S, Hayashi M. N-heterocyclic carbene initiated anionic polymerization of (E,E)-methyl sorbate and subsequent ring-closing to cyclic poly(alkyl sorbate). J Am Chem Soc. 2017;139:15005–12.

    Article  CAS  Google Scholar 

  7. Matsuoka S, et al. Organocatalytic tail-to-tail dimerization of olefin: umpolung of methyl methacrylate mediated by N-heterocyclic carbene. Org Lett. 2011;13:3722–5.

    Article  CAS  Google Scholar 

  8. Kato T, Ota Y, Matsuoka S, Takagi K, Suzuki M. Experimental mechanistic studies of the tail-to-tail dimerization of methyl methacrylate catalyzed by N-heterocyclic carbene. J Org Chem. 2013;78:8739–47. https://doi.org/10.1021/jo401477b

    Article  CAS  PubMed  Google Scholar 

  9. Kato T, Matsuoka S, Suzuki M. Cooperative N-heterocyclic carbene/bronsted acid catalysis for the tail-to-tail (Co)dimerization of methacrylonitrile. J Org Chem. 2014;79:4484–91.

    Article  CAS  Google Scholar 

  10. Matsuoka S, Awano N, Nakazawa M, Suzuki M. Tail-to-tail dimerization and Rauhut-Currier reaction of disubstituted Michael acceptors catalyzed by N-heterocyclic carbene. Tetrahedron Lett. 2016;57:5707–11.

    Article  CAS  Google Scholar 

  11. Matsuoka S, Fukumoto Y, Suzuki M. Tail-to-tail cross-dimerization of methyl methacrylate/methacrylonitrile with acrylates catalyzed by N-heterocyclic carbene. Chem Lett. 2017;46:983–6. https://doi.org/10.1246/cl.170263

    Article  CAS  Google Scholar 

  12. Kawai H, Fukumoto A, Matsuoka S, Suzuki M. Enhanced activity of the tail-to-tail dimerization of Michael acceptors catalyzed by N-heterocyclic carbene and subsequent polymer synthesis from the resulting dimers. Chem Lett. 2019;48:558–61. https://doi.org/10.1246/cl.190097

    Article  CAS  Google Scholar 

  13. Biju AT, Padmanaban M, Wurz NE, Glorius F. N-heterocyclic carbene catalyzed umpolung of Michael acceptors for intermolecular reactions. Angew Chem Int Ed. 2011;50:8412–5. https://doi.org/10.1002/anie.201103555

    Article  CAS  Google Scholar 

  14. Schedler M, Wurz NE, Daniliuc CG, Glorius F. N-heterocyclic carbene catalyzed umpolung of styrenes: mechanistic elucidation and selective tail-to-tail dimerization. Org Lett. 2014;16:3134–7. https://doi.org/10.1021/ol501256d

    Article  CAS  PubMed  Google Scholar 

  15. Oga Y, Hosoi Y, Takasu A, Higuchi M. Synthesis of cyclic poly(methyl methacrylate) via N-heterocyclic carbene (NHC) initiated-anionic polymerization and subsequent ring-closing without need of highly dilute conditions. Polymer. 2020;186:122019.

    Article  CAS  Google Scholar 

  16. Naruse K, Takasu A, Higuchi M. Direct observation of a cyclic vinyl polymer prepared by anionic polymerization using N-heterocyclic carbene and subsequent ring-closure without highly diluted conditions. Macromol Chem Phys. 2020;221:2000004.

    Article  CAS  Google Scholar 

  17. Oishi T, Yamasaki H, Fujimoto M. Asymmetric polymerization of N-substituted maleimides. Polym J. 1991;23:795–804.

    Article  CAS  Google Scholar 

  18. Onimura K, Tsutsumi H, Oishi T. Asymmetric polymerization of N-substituted maleimides with organolithium—bisoxazolines complex. Polym Bull. 1997;39:437–44.

    Article  CAS  Google Scholar 

  19. Onimura K, Tsutsumi H, Oishi T. Asymmetric anionic polymerization of N-substituted maleimides with Et2Zn and chiral bisoxazolines. Chem Lett. 1998;27:791–2.

    Article  Google Scholar 

  20. Onimura K, Tsutsumi H, Oishi T. Asymmetric anionic polymerization of N-substituted maleimides with n-butyllithiummethylene-bridged 2,2-bis(oxazoline) complexes. Macromolecules. 1998;31:5971–6.

    Article  CAS  Google Scholar 

  21. Oishi T, Onimura K, Tanaka K, Horimoto W, Tsutsumi H. Asymmetric polymerization of N-substituted maleimides with chiral oxazolidine—organolithium. J Polym Sci Part A, Polym Chem. 1999;37:473–82.

    Article  Google Scholar 

  22. Oishi T, Onimura K, Isobe Y, Tsutsumi H. First determination of absolute stereochemistry of N-naphthylmaleimide polymer. Chem Lett. 1999;28:673–4.

    Article  Google Scholar 

  23. Oishi T, Onimura K, Isobe Y, Yanagihara H, Tsutsumi H. Asymmetric anionic polymerization of maleimides bearing bulky substituents. J Polym Sci Part A, Polym Chem. 2000;38:310–20.

    Article  CAS  Google Scholar 

  24. Zhou H, Onimura K, Tsutsumi H, Oishi T. Asymmetric anionic polymerization of (R)-(+)-N-α-methylbenzylmaleimide with chiral ligand/organometal complex. Polym J. 2000;32:552–9.

    Article  CAS  Google Scholar 

  25. Zhou H, Onimura K, Tsutsumi H, Oishi T. Synthesis and chiroptical properties of (S)-(-)-N-α-methylbenzylmaleimide polymers containing crystallinity. Polym J. 2001;33:227–35.

    Article  CAS  Google Scholar 

  26. Isobe Y, Onimura K, Tsutsumi H, Oishi T. Asymmetric anionic polymerization of N-1-naphthylmaleimide with chiral ligand—organometal complexes in toluene. J Polym Sci Part A, Polym Chem. 2001;39:3556–65.

    Article  CAS  Google Scholar 

  27. Isobe Y, Onimura K, Tsutsumi H, Oishi T. Asymmetric polymerization of N-1-naphthylmaleimide with chiral anionic initiator: preparation of highly optically active poly(N-1-naphthylmaleimide). Macromolecules. 2001;34:7617–23.

    Article  CAS  Google Scholar 

  28. Onimura K, Zhang Y, Yagyu M, Oishi T. Asymmetric anionic polymerization of optically active N-1-cyclohexylethylmaleimide. J Polym Sci Part A, Polym Chem. 2004;42:4682–92.

    Article  CAS  Google Scholar 

  29. Zhang Y, Onimura K, Tsutsumi H, Oishi T. Asymmetric anionic polymerization of (S)-(-)-N-maleoyl-L-valine methyl ester. Polym J. 2004;36:878–87.

    Article  CAS  Google Scholar 

  30. Lee YK, Kitamura S, Onimura K, Tsutsumi H, Oishi T. Asymmetric polymerization of N-1-naphthylmaleimide with (R,R)-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2- cyclohexanediaminatocobalt (II). J Polym Sci Part A, Polym Chem. 2004;42:6157–62.

    Article  CAS  Google Scholar 

  31. Gao H, Isobe Y, Onimura K, Oishi T. Synthesis and polymerization of novel (S)-N-maleoyl-L-leucine propargyl ester. Polym J. 2006;38:1288–91.

    Article  CAS  Google Scholar 

  32. Isobe Y, Onimura K, Tsutsumi H, Oishi T. Asymmetric polymerization of N-1-anthrylmaleimide with diethylzinc—chiral ligand complexes and optical resolution using the Polymer. Polym J. 2002;34:18–24.

    Article  CAS  Google Scholar 

  33. Oishi T, Isobe Y, Onimura K, Tsutsumi H. Asymmetric polymerization of N-ortho- or para-substituted phenylmaleimide using chiral anionic initiators. Polym J. 2003;35:245–54.

    Article  CAS  Google Scholar 

  34. Oishi T, Zhang Y, Fukushima T, Onimura K. Asymmetric anionic polymerizations of (R)-N-Maleoyl-D-phenylglycine alkyl esters and optical resolution using their. Polym J. 2005;37:453–63.

    Article  CAS  Google Scholar 

  35. Gao H, Isobe Y, Onimura K, Oishi T. Synthesis and asymmetric polymerization of (S)-N-maleoyl-L-leucine propargyl ester. J Polym Sci Part A, Polym Chem. 2007;45:3722–38.

    Article  CAS  Google Scholar 

  36. Gao H, Isobe Y, Onimura K, Oishi T. Asymmetric polymerization of (S)-N-maleoyl-L-leucine allyl ester and chiral recognition ability of its polymer as chiral stationary phase for HPLC. Polym J. 2007;39:764–76.

    Article  CAS  Google Scholar 

  37. Azechi M, Toyota N, Yamabuki K, Onimura K, Oishi T. Anionic polymerization of N-substituted maleimide with achiral and chiral amines as an initiator. Polym Bull. 2004;67:631–40.

    Article  Google Scholar 

  38. Enders D, Breuer K, Runsink J, Teles JH. Chemical reactions of the stable carbene 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene. Liebigs Ann. 1996;2019–28.

  39. Matsuoka S, Tochigi Y, Takagi K, Suzuki M. Sequential one-pot and three-component reactions of an N-heterocyclic carbene to form 4-(1,2,4-triazol-5-ylidene)pyrrolidine-2,5-diones: a tandem umpolung/annulation sequence via deoxy-Breslow intermediates. Tetrahedron. 2012;68:9836–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AT is grateful for financial support from the Ministry of Education, Science and Culture of Japan (Grant-in-Aid for Development Scientific Research 18K19112 and 20H02786). We also acknowledge Dr. Mikihiro Hayashi for his continuous advice and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Takasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muramatsu, Y., Oga, Y., Takasu, A. et al. Direct observation of cyclic poly(N-substituted maleimide)s with broad size distributions synthesized by anionic polymerization using an N-heterocyclic carbene and successive ring closure without high dilutions. Polym J 52, 1253–1261 (2020). https://doi.org/10.1038/s41428-020-0384-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0384-z

This article is cited by

Search

Quick links