Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

“One stroke drawing” of poly(ribonucleic acids) with different aptamer functions for sensing probes


Using polymerase chain reaction (PCR)-mediated recombination, single ribonucleic acid (RNA) chains containing bifunctional RNA sequences involving substrate binding and phosphorescent signaling were prepared. For substrate binding and phosphorescent labeling, thrombin- or lysozyme-binding and ruthenium complex-binding RNA aptamer sequences were used. It was demonstrated that the structural properties of the conjugated RNAs showed similar characteristics to the original aptamers using circular dichroism (CD) spectrometry. Furthermore, electrophoretic mobility shift assays of the proteins and phosphorescence measurements of the ruthenium complexes suggested that the binding abilities of the conjugated RNAs maintained the original aptamer functions. Finally, it was established that the conjugated RNA sequences were suitable as phosphorescent RNA probes for protein cognates. Therefore, this “one stroke drawing” strategy is proposed as a promising biological method for the generation of phosphorescent RNA probes that do not culminate in a loss of function of the original aptamers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Crick F. Central Dogma of Molecular Biology. Nature. 1970;227:561–3.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell. 1982;31:147–57.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol. 1998;5:505–17.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Sassanfar M, Szostak JW. An RNA motif that binds ATP. Nature. 1993;364:550–3.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Song K-M, Lee S, Ban C. Aptamers and Their Biological Applications. Sensors. 2012;12:612–31.

    PubMed  Article  Google Scholar 

  7. 7.

    Toh SY, Citartan M, Gopinath SCB, Tang T-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron. 2015;64:392–403.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016;85:32–45.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Narat M. Production of Antibodies in Chickens. Food Technol Biotechnol. 2003;41:259–67.

    CAS  Google Scholar 

  10. 10.

    Burnet FM. The Production of Antibodies. A Review and a Theoretical Discussion. Prod Antibodies Rev Theor Discuss. Melbourne & London: Macmillan & Co.; 1941:76.

  11. 11.

    Groff K, Brown J, Clippinger AJ. Modern affinity reagents: recombinant antibodies and aptamers. Biotechnol Adv. 2015;33:1787–98.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Osborne SE, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol. 1997;1:5–9.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    E Wang R, Wu H, Niu Y, Cai J. Improving the Stability of Aptamers by Chemical Modification. Curr Med Chem. 2011;18:4126–38.

    Article  Google Scholar 

  14. 14.

    Baird GS. Where Are All the Aptamers? Am J Clin Pathol. 2010;134:529–31.

    PubMed  Article  Google Scholar 

  15. 15.

    Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, et al. Antibody-Drug Conjugates for Cancer Therapy: chemistry to Clinical Implications. Pharmaceuticals. 2018;11:32.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  16. 16.

    Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-Drug Conjugates: a Comprehensive Review. Mol Cancer Res. 2020;18:3–19.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Melton RG, Sherwood RF. Antibody-Enzyme Conjugates for Cancer Therapy. JNCI J Natl Cancer Inst. 1996;88:153–65.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Jeanson A, Cloes J-M, Bouchet M, Rentier B. Comparison of conjugation procedures for the preparation of monoclonal antibody-enzyme conjugates. J Immunol Methods. 1988;111:261–70.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Van Weemen BK, Schuurs AHWM. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15:232–6.

    PubMed  Article  Google Scholar 

  20. 20.

    Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Disco. 2017;16:315–37.

    CAS  Article  Google Scholar 

  21. 21.

    Holowacz M, Krans A, Wallén C, Martinez A, Mohammadi N. A Survey of Commercial Biomolecules, Delimited to Pharmaceuticals and Medical Devices. In UPTEC K. Digitala Vetenskapliga Arkivet. 2017:59 Accessed 22 June 2017.

  22. 22.

    Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Dennler P, Chiotellis A, Fischer E, Brégeon D, Belmant C, Gauthier L, et al. Transglutaminase-Based Chemo-Enzymatic Conjugation Approach Yields Homogeneous Antibody–Drug Conjugates. Bioconjug Chem. 2014;25:569–78.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hnasko RM. Bioconjugation of Antibodies to Horseradish Peroxidase (HRP). In: Hnasko R, editor. ELISA Methods Protoc., New York, NY: Springer; 2015. p. 43–50.

  25. 25.

    Martin C, Brachet G, Colas C, Allard-Vannier E, Kizlik-Masson C, Esnault C, et al. In Vitro Characterization and Stability Profiles of Antibody–Fluorophore Conjugates Derived from Interchain Cysteine Cross-Linking or Lysine Bioconjugation. Pharmaceuticals. 2019;12:176.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  26. 26.

    Berg EA, Fishman JB. Labeling Antibodies Using N- Hydroxysuccinimide (NHS)-Fluorescein. Cold Spring Harb Pro- toc. 2019;3:229–31.

    Google Scholar 

  27. 27.

    Horisawa K. Specific and quantitative labeling of biomolecules using click chemistry. Front Physiol. 2014;5:1–6.

    Article  Google Scholar 

  28. 28.

    Kim IS, Shim JH, Suh YT, Yau KYF, Hall JC, Trevors JT, et al. Green fluorescent protein-labeled recombinant fluobody for detecting the picloram herbicide. Biosci Biotechnol Biochem. 2002;66:1148–51.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, et al. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. J Mol Biol. 2016;428:3885–902.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Wongso D, Dong J, Ueda H, Kitaguchi T. Flashbody: a Next Generation Fluobody with Fluorescence Intensity Enhanced by Antigen Binding. Anal Chem. 2017;89:6719–25.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    El-Sagheer AH, Brown T. Click chemistry with DNA. Chem Soc Rev. 2010;39:1388–405.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Paredes E, Das SR. Click chemistry for rapid labeling and ligation of RNA. Chembiochem Eur J Chem Biol. 2011;12:125–31.

    CAS  Article  Google Scholar 

  33. 33.

    Wang H, Qin M, Liu R, Ding X, Chen ISY, Jiang Y. Characterization of A Bifunctional Synthetic RNA Aptamer and A Truncated Form for Ability to Inhibit Growth of Non-Small Cell Lung Cancer. Sci Rep. 2019;9:18836.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Paredes E, Das SR. Optimization of acetonitrile co-solvent and copper stoichiometry for pseudo-ligandless click chemistry with nucleic acids. Bioorg Med Chem Lett. 2012;22:5313–6.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Müller J, Wulffen B, Pötzsch B, Mayer G. Multidomain Targeting Generates a High-Affinity Thrombin-Inhibiting Bivalent Aptamer. ChemBioChem. 2007;8:2223–6.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    GUO S, TSCHAMMER N, MOHAMMED S, GUO P. Specific Delivery of Therapeutic RNAs to Cancer Cells via the Dimerization Mechanism of phi29 Motor pRNA. Hum Gene Ther. 2005;16:1097–109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Goda T, Higashi D, Matsumoto A, Hoshi T, Sawaguchi T, Miyahara Y. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing. Biosens Bioelectron. 2015;73:174–80.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Filonov GS, Jaffrey SR. RNA Imaging with Dimeric Broccoli in Live Bacterial and Mammalian Cells. Curr Protoc Chem Biol. 2016;8:1–28.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Zhang J, Fei J, Leslie BJ, Han KY, Kuhlman TE, Ha T. Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells. Sci Rep. 2015;5:17295.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny J-L, et al. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci. 2015;6:4284–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Lin S, Lu L, Liu J-B, Liu C, Kang T-S, Yang C, et al. A G-quadruplex-selective luminescent iridium(III) complex and its application by long lifetime. Biochim Biophys Acta BBA - Gen Subj. 2017;1861:1448–54.

    CAS  Article  Google Scholar 

  42. 42.

    Thoa TTT, Minagawa N, Aigaki T, Ito Y, Uzawa T. Regulation of photosensitisation processes by an RNA aptamer. Sci Rep. 2017;7:43272.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Liu X, Zhang D, Cao G, Yang G, Ding H, Liu G, et al. RNA aptamers specific for bovine thrombin. J Mol Recognit. 2003;16:23–7.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Cox JC, Ellington AD. Automated selection of anti-Protein aptamers. Bioorg Med Chem. 2001;9:2525–31.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Pastor F, Soldevilla MM, Villanueva H, Kolonias D, Inoges S, de Cerio AL, et al. CD28 Aptamers as Powerful Immune Response Modulators. Mol Ther - Nucleic Acids. 2013;2:e98.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    von Hacht A, Seifert O, Menger M, Schütze T, Arora A, Konthur Z, et al. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 2014;42:6630–44.

    Article  CAS  Google Scholar 

  48. 48.

    Min I, Tamaki Y, Ishitani O, Serizawa T, Ito Y, Uzawa T. Effective Suppression of O2 Quenching of Photo-Excited Ruthenium Complex Using RNA Aptamer. Bull Chem Soc Jpn. 2020;93:1386–92.

    CAS  Article  Google Scholar 

  49. 49.

    Renner SW. Immunoblotting and dot immunobinding. Emerging techniques in protein immunochemistry. Arch Pathol Lab Med. 1988;112:780–6.

    CAS  PubMed  Google Scholar 

Download references


IM was financially supported by the RIKEN-TIT International Program Associate. CD spectral measurements were conducted by the Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS).

Author information



Corresponding author

Correspondence to Yoshihiro Ito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Min, I., Uzawa, T., Serizawa, T. et al. “One stroke drawing” of poly(ribonucleic acids) with different aptamer functions for sensing probes. Polym J (2021).

Download citation


Quick links