Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold

Abstract

Squash is an RNA aptamer that strongly activates the fluorescence of small-molecule analogs of the fluorophore of green fluorescent protein (GFP). Unlike other fluorogenic aptamers, isolated de novo from random-sequence RNA, Squash was evolved from the bacterial adenine riboswitch to leverage its optimized in vivo folding and stability. We now report the 2.7-Å resolution cocrystal structure of fluorophore-bound Squash, revealing that while the overall fold of the riboswitch is preserved, the architecture of the ligand-binding core is dramatically transformed. Unlike previously characterized aptamers that activate GFP-derived fluorophores, Squash does not harbor a G-quadruplex, sandwiching its fluorophore between a base triple and a noncanonical base quadruple in a largely apolar pocket. The expanded structural core of Squash allows it to recognize unnatural fluorophores that are larger than the simple purine ligand of the parental adenine riboswitch, and suggests that stable RNA scaffolds can tolerate larger variation than has hitherto been appreciated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the Squash fluorescence turn-on aptamer.
Fig. 2: The Squash fluorophore-binding site is assembled from four strands.
Fig. 3: A-minor motifs anchor both ends of the Squash core.
Fig. 4: Structure-guided mutational analysis of Squash.
Fig. 5: Squash recognition of DFHO and DFHBI-1T.
Fig. 6: Comparison of Squash and the adenine riboswitch aptamer domain.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factor amplitudes for the Squash–DFHBI-1T (Ir), Squash–DFHBI-1T (native) and Squash–DFHO complex cocrystal structures have been deposited with the Protein Data Bank under accession codes 7KVT, 7KVU and 7KVV, respectively.

References

  1. Trachman, R. J. 3rd & Ferré-D’Amaré, A. R. Tracking RNA with light: selection, structure and design of fluorescence turn-on RNA aptamers. Q. Rev. Biophys. 52, e8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Braselmann, E., Rathbun, C., Richards, E. M. & Palmer, A. E. Illuminating RNA biology: tools for imaging RNA in live mammalian cells. Cell Chem. Biol. 27, 891–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neubacher, S. & Hennig, S. RNA structure and cellular applications of fluorescent light-up aptamers. Angew. Chem. Int. Ed. Engl. 58, 1266–1279 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, E., Lee, J. M., Kim, H. & Y., K. Fluorogenic aptasensors with small molecules. Chemosensors 9, 54 (2021).

    Article  CAS  Google Scholar 

  5. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Autour, A., Westhof, E. & Ryckelynck, M. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Nucleic Acids Res. 44, 2491–2500 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trachman, R. J.3rd et al. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer. Nat. Chem. Biol. 15, 472–479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han, K. Y., Leslie, B. J., Fei, J. Y., Zhang, J. C. & Ha, T. Understanding the photophysics of the Spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, H. et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warner, K. D. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Warner, K. D. et al. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat. Chem. Biol. 13, 1195–1201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song, W. et al. Imaging RNA polymerase III transcription using a photostable RNA–fluorophore complex. Nat. Chem. Biol. 13, 1187–1194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mieczkowski, M. et al. Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nat. Commun. 12, 3549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baugh, C., Grate, D. & Wilson, C. 2.8 Å crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Shelke, S. A. et al. Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif. Nat. Commun. 9, 4542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Banco, M. T. & Ferré-D’Amaré, A. R. The emerging structural complexity of G-quadruplex RNAs. RNA 27, 390–402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dey, S. K. et al. Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag Nat. Chem. Biol. (in the press). https://doi.org/10.1038/s41589-021-00925-0 (2021).

  22. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sjekloća, L. & Ferré-D’Amaré, A. R. Binding between G-quadruplexes at the homodimer interface of the Corn RNA aptamer strongly activates thioflavin T fluorescence. Cell Chem. Biol. 26, 1159–1168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burley, S. K. & Petsko, G. A. Weakly polar interactions in proteins. Adv. Protein Chem. 39, 125–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Giese, M., Albrecht, M. & Rissanen, K. Anion-p interactions with fluoroarenes. Chem. Rev. 115, 8867–8895 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Dalvit, C. & Vulpetti, A. Weak intermolecular hydrogen bonds with fluorine: detection and implications for enzymatic/chemical reactions, chemical properties, and ligand/protein fluorine NMR screening. Chem. Eur. J. 22, 7592–7601 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Sykes, B. D., Weingarten, H. I. & Schlessinger, M. J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties and fluorine-19 nuclear magnetic resonance spectrum. Proc. Natl Acad. Sci. USA 71, 469–473 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Porter, E. B., Marcano-Velázquez, J. G. & Batey, R. T. The purine riboswitch as a model system for exploring RNA biology and chemistry. Biochim. Biophys. Acta 1839, 919–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeng, S. et al. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET. RNA 27, 433–444 (2021).

    Article  PubMed  Google Scholar 

  31. Fernandez-Millan, P., Autour, A., Ennifar, E., Westhof, E. & Ryckelynck, M. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. RNA 23, 1788–1795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Truong, L. & Ferré-D’Amaré, A. R. From fluorescent proteins to fluorogenic RNAs: tools for imaging cellular macromolecules. Protein Sci. 28, 1374–1386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lau, M. W. L. & Ferré-D’Amaré, A. R. In vitro evolution of coenzyme-independent variants from the glmS ribozyme structural scaffold. Methods 106, 76–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lau, M. W. L., Trachman, R. J. 3rd & Ferré-D’Amaré, A. R. A divalent cation-dependent variant of the glmS ribozyme with stringent Ca2+ selectivity co-opts a preexisting nonspecific metal ion-binding site. RNA 23, 355–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porter, E. B., Polaski, J. T., Morck, M. M. & Batey, R. T. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat. Chem. Biol. 13, 295–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de la Peña, M., Dufour, D. & Gallego, J. Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold. RNA 15, 1949–1964 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jones, C. P. & Ferré-D’Amaré, A. R. Long-range interactions in riboswitch control of gene expression. Annu. Rev. Biophys. 46, 455–481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serganov, A., Polonskaia, A., Phan, A. T., Breaker, R. R. & Patel, D. J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167–1171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thore, S., Leibundgut, M. & Ban, N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Edwards, T. E. & Ferré-D’Amaré, A. R. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 14, 1459–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, K. D. et al. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol. 16, 1218–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kulshina, N., Baird, N. J. & Ferré-D’Amaré, A. R. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat. Struct. Mol. Biol. 16, 1212–1217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao, H., Edwards, T. E. & Ferré-D’Amaré, A. R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stagno, J. R. et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541, 242–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Leontis, N. B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

  47. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  52. McCoy, A. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franke, D. et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 50, 1212–1225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keller, S. et al. High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal. Chem. 84, 5066–5073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, H., Piszczek, G. & Schuck, P. SEDPHAT–a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76, 137–148 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of beamlines 5.0.1 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, and 24-ID-C and 24-ID-E of the Advanced Photon Source (APS), Argonne National Laboratory for crystallographic data collection; the staff of beamline 12-ID-B of APS for SAXS; G. Piszczeck and of the Biophysics Core of the National Heart, Lung and Blood Institute (NHLBI) for fluorescence and ITC; and M. Banco, N. Demeshkina, C. Jones, T. Numata and R. Trachman for discussions. This research used resources of the APS, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (NIH P30 GM124165). The Pilatus 6M detector on 24-ID-C beam line is funded by an NIH-ORIP HEI grant (S10 RR029205). This work was supported in part by NIH award R35NS111631 (to S.R.J.) and by the intramural program of the NHLBI, NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.R.J. and A.R.F.D’A. initiated the project. L.T. performed fluorescence, crystallographic, SAXS and ITC experiments. S.K.D. and X.L. performed initial biochemistry and synthesized fluorophores. H.K. and N.T. performed NMR experiments. A.R.F.D’A. and L.T. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Adrian R. Ferré-D’Amaré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Sven Hennig and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Electron density maps for structures determined in this study.

a, Density-modified SAD electron density map for the Squash-DFHBI-1T complex contoured at 1.5 σ (blue mesh), superimposed on the final refined model. b, Composite simulated annealing-omit 2|Fo | -|Fc | electron density map for the Squash-DFHO complex contoured at 1.5 σ (blue mesh), superimposed on the final refined model.

Extended Data Fig. 2 Small-angle X-ray scattering analysis of Squash.

a, Experimental scattering profile of Squash-DFHBI-1T and scattering profile back-calculated2 using CRYSOL, from the co-crystal structure (Methods). I and q are the intensity and the scattering vector, respectively. b, Scattering profile of Squash in the presence and absence of excess DFHBI-1T. c, Scattering profile of Squash mutant with disrupted L2-L3 kissing loop interactions (MM) in the presence and absence of excess DFHBI-1T.

Extended Data Fig. 3 Eight tiers comprise the Squash aptamer core.

Ball-and-stick representation of each tier (numbered 1-8 in bold numerals) in the Squash core. Panel with DFHBI-1T and G14 (tier 2) shows A69 and A70 from adjacent tiers for reference. Orange dashed lines denote hydrogen bonds. Secondary structure representation corresponds to that in Fig. 1e.

Extended Data Fig. 4 ThT recognition by Squash.

a, Fluorescence of Squash RNA (0.5 μM) and thioflavin T (ThT; 1.0 μM) measured in the absence or the presence of increasing concentrations of DFHO (Methods). b, DFHO fluorescence measured from the same mixtures.

Extended Data Fig. 5 Cartoon representation of orthogonal views of DFHO-bound Squash.

RNA color scheme as in Fig. 1. Metal ions and water molecules omitted for clarity.

Extended Data Fig. 6 Isothermal titration calorimetry.

Triplicate, baseline-corrected thermograms and fits for Squash titrated with a, DFHBI-1T (means ± s.d., n = 3). ΔH and ΔG are 41.0 ± 20.8 nM and -21.3 ± 2.3 kcal/Mol, respectively. b, Triplicate, baseline-corrected thermograms and fits for Squash titrated with a, DFHBI-1E (means ± s.d., n = 3). ΔH and ΔG are 30.3 ± 16.6 and -19.2 ± 0.8 kcal/Mol, respectively.

Extended Data Fig. 7 Fluorescence of DFHBI-1T and DFHBI-1E bound Squash.

Absorbance spectra (dashed lines) were recorded at 503 nm and 492 nm, and emission spectra (solid lines) at 451 nm and 431 nm, respectively. Green lines, Squash with DFHBI-1T; blue lines, Squash with DFHBI-1E.

Extended Data Fig. 8 The adenine riboswitch core is smaller than that of Squash.

a, Ball-and-stick representations of each of the five tiers (numbered 1-5 in bold numerals) that comprise the adenine riboswitch core (PDB ID:1Y26; ref. 3). Orange dashed lines denote hydrogen bonds. Base pairs in the secondary structure are in Leontis-Westhof symbols4. Compare with Supplementary Fig. 3. b, Structure-based sequence alignment of Squash (sq) and the V. vulnificus add adenine riboswitch aptamer domain (ar). Residue numbers correspond to Squash. Color scheme is that of Fig. 1. Asterisks and periods denote sequence identity and gaps needed to account for Squash being longer, respectively. Junction regions J1/2, J2/3 and J3/1 have no clear structural correspondence and the residues in these regions are not aligned.

Extended Data Fig. 9 Orthogonal ligand selectivity of the adenine riboswitch and Squash.

a, Fluorescence activity of the adenine riboswitch in the presence of excess DFHBI-1T, normalized to Squash fluorescence (means ± s.d., n = 3; Methods). Ordinate is discontinuous to accommodate different scale of the two samples. b, Normalized fluorescence of Squash-DFHBI-1T in the presence of varying excess of adenine.

Extended Data Fig. 10 Comparison of Squash and iSpinach recognition of DFHBI-1T.

a, Cartoon representation of the fluorophore binding site of iSpinach (PDB:7L0Z; ref. 5). Orange dashed lines denote hydrogen bonds. Residue numbers correspond to those of Spinach (ref. 6). b, Fluorescence lifetimes (Methods) of DFHBI-1T bound to Squash and iSpinach (green squares and cyan triangles, respectively; means ± s.d., n = 3). Black circles, instrument response function (IRF).

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Extended Data Figs. 1–10, Note and refs.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, L., Kooshapur, H., Dey, S.K. et al. The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold. Nat Chem Biol 18, 191–198 (2022). https://doi.org/10.1038/s41589-021-00931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00931-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing