Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Functionalization of acyclic xenonucleic acid with modified nucleobases

Abstract

Xenonucleic acids (XNAs), which are composed of artificial scaffolds and natural nucleobases, have unique hybridization properties that depend on the scaffold structure. Here, we functionalized the acyclic XNA serinol nucleic acid (SNA) with nonnatural nucleobases. A linear SNA probe functionalized with 5-perylenylethynyl uracil residues showed weak greenish-yellow excimer emission in the absence of target RNA and bright cyan-green monomer emission in the presence of target RNA. Probe hybridization was rapid and enabled the quantitative measurement of RNA with discrimination of single-base mismatches. We also designed a photoresponsive SNA with two 8-pyrenylvinyl adenine (PVA) residues. Irradiation with blue (455 nm) light caused [2 + 2] photocycloaddition between intrastrand PVAs, resulting in the dissociation of the SNA/RNA duplex, whereas irradiation with ultraviolet (340 nm) light induced cycloreversion of the PVA photodimer and SNA/RNA duplex reformation. Using a combination of 8-naphthylvinyl adenine (NVA) and PVA and irradiation with 465 nm, 405 nm, 340 nm, and 300 nm light, orthogonal control of the formation of SNA(NVA-NVA)/RNA and SNA(PVA-NVA)/RNA duplexes was demonstrated. Thus, nucleobase modifications further expand the utility of acyclic XNA in bionanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beaucage SL, Iyer RP. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 1992;48:2223–311.

    Article  CAS  Google Scholar 

  2. Leumann CJ. DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem. 2002;10:841–54.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang S, Switzer C, Chaput JC. The resurgence of acyclic nucleic acids. Chem Biodivers. 2010;7:245–58.

    Article  CAS  PubMed  Google Scholar 

  4. Pinheiro VB, Holliger P. The XNA world: progress towards replication and evolution of synthetic genetic polymers. Curr Opin Chem Biol. 2012;16:245–52.

    Article  CAS  PubMed  Google Scholar 

  5. Krishnamurthy R. On the emergence of RNA. Isr J Chem. 2015;55:837–50.

    Article  CAS  Google Scholar 

  6. Chaput JC, Herdewijn P. What Is XNA? Angew Chem Int Ed. 2019;58:11570–2.

    Article  CAS  Google Scholar 

  7. Murayama K, Asanuma H. Design and hybridization properties of acyclic xeno nucleic acid oligomers. ChemBioChem. 2021;22:2507–15.

    Article  CAS  PubMed  Google Scholar 

  8. Asanuma H, Kamiya Y, Kashida H, Murayama K. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chem Commun. 2022;28:3993.

    Article  Google Scholar 

  9. Hövelmann F, Seitz O. DNA stains as surrogate nucleobases in fluorogenic hybridization probes. Acc Chem Res. 2016;49:714–23.

    Article  PubMed  Google Scholar 

  10. Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-acid structures as intracellular probes for live cells. Adv Mater. 2020;32:1901743.

    Article  CAS  Google Scholar 

  11. Vilaivan T. Fluorogenic PNA probes. Beilstein J Org Chem. 2018;14:253–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43:371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851–64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Le BT, Chen S, Abramov M, Herdewijn P, Veedu RN. Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and D-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro. Chem Commun. 2016;52:13467–70.

    Article  CAS  Google Scholar 

  15. McClorey G, Moulton HM, Iversen PL, Fletcher S, Wilton SD. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther. 2006;13:1373–81.

    Article  CAS  PubMed  Google Scholar 

  16. Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR, Baas F, et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol Biosyst. 2010;6:862.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi M, Nagai C, Hatakeyama H, Minakawa N, Harashima H, Matsuda A. Intracellular stability of 2′-OMe-4′-thioribonucleoside modified siRNA leads to long-term RNAi effect. Nucleic Acids Res. 2012;40:5787–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schlegel MK, Foster DJ, Kel’in AV, Zlatev I, Bisbe A, Jayaraman M, et al. Chirality dependent potency enhancement and structural impact of glycol nucleic acid modification on siRNA. J Am Chem Soc. 2017;139:8537–46.

    Article  CAS  PubMed  Google Scholar 

  19. Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35:238–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu H, Zhang S, Chaput JC. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat Chem. 2012;4:183–7.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S, Cozens C, et al. Catalysts from synthetic genetic polymers. Nature. 2015;518:427–30.

    Article  CAS  PubMed  Google Scholar 

  22. Eremeeva E, Fikatas A, Margamuljana L, Abramov M, Schols D, Groaz E, et al. Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acids Res. 2019;47:4927–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoshino H, Kasahara Y, Kuwahara M, Obika S. DNA polymerase variants with high processivity and accuracy for encoding and decoding locked nucleic acid sequences. J Am Chem Soc. 2020;142:21530–7.

    Article  CAS  PubMed  Google Scholar 

  24. Asanuma H, Toda T, Murayama K, Liang X, Kashida H. Unexpectedly stable artificial duplex from flexible acyclic threoninol. J Am Chem Soc. 2010;132:14702–3.

    Article  CAS  PubMed  Google Scholar 

  25. Murayama K, Kashida H, Asanuma H. Acyclic L-threoninol nucleic acid (L-aTNA) with suitable structural rigidity cross-pairs with DNA and RNA. Chem Commun. 2015;51:6500–3.

    Article  CAS  Google Scholar 

  26. Murayama K, Kashida H, Asanuma H. Methyl group configuration on acyclic threoninol nucleic acids (aTNAs) impacts supramolecular properties. Org Biomol Chem. 2022;20:4115–22.

    Article  CAS  PubMed  Google Scholar 

  27. Kashida H, Murayama K, Toda T, Asanuma H. Control of the chirality and helicity of oligomers of serinol nucleic acid (SNA) by sequence design. Angew Chem Int Ed. 2011;50:1285–8.

    Article  CAS  Google Scholar 

  28. Murayama K, Kamiya Y, Kashida H, Asanuma H. Ultrasensitive molecular beacon designed with totally serinol nucleic acid (SNA) for monitoring mRNA in cells. ChemBioChem. 2015;16:1298–301.

    Article  CAS  PubMed  Google Scholar 

  29. Le BT, Murayama K, Shabanpoor F, Asanuma H, Veedu RN. Antisense oligonucleotide modified with serinol nucleic acid (SNA) induces exon skipping in mdx myotubes. RSC Adv. 2017;7:34049–52.

    Article  CAS  Google Scholar 

  30. Asanuma H, Murayama K, Kamiya Y, Kashida H. The DNA duplex as an aqueous one-dimensional soft crystal scaffold for photochemistry. Bull Chem Soc Jpn. 2018;91:1739–48.

    Article  CAS  Google Scholar 

  31. Asanuma H, Murayama K, Kamiya Y, Kashida H. Design of photofunctional oligonucleotides by copolymerization of natural nucleobases with base surrogates prepared from acyclic scaffolds. Polym J. 2017;49:279–89.

    Article  CAS  Google Scholar 

  32. Abdelhady AM, Onizuka K, Ishida K, Yajima S, Mano E, Nagatsugi F. Rapid alkene–alkene photo-cross-linking on the base-flipping-out field in duplex DNA. J Org Chem. 2022;87:2267–76.

    Article  CAS  PubMed  Google Scholar 

  33. Morihiro K, Kodama T, Waki R, Obika S. Light-triggered strand exchange reaction using the change in the hydrogen bonding pattern of a nucleobase analogue. Chem Sci. 2014;5:744–50.

    Article  CAS  Google Scholar 

  34. Barrois S, Wagenknecht HA. Diarylethene-modified nucleotides for switching optical properties in DNA. Beilstein J Org Chem. 2012;8:905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cahová H, Jäschke A. Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA. Angew Chem Int Ed. 2013;52:3186–90.

    Article  Google Scholar 

  36. Ogasawara S, Maeda M. Straightforward and reversible photoregulation of hybridization by using a photochromic nucleoside. Angew Chem Int Ed. 2008;47:8839–42.

    Article  CAS  Google Scholar 

  37. Wada T, Minamimoto N, Inaki Y, Inoue Y. Peptide Ribonucleic Acids (PRNA). 2. A Novel Strategy for Active Control of DNA Recognition through Borate Ester Formation. J Am Chem Soc. 2000;122:6900–10.

    Article  CAS  Google Scholar 

  38. Ohkubo A, Kasuya R, Miyata K, Tsunoda H, Seio K, Sekine M. New thermolytic carbamoyl groups for the protection of nucleobases. Org Biomol Chem. 2009;7:687.

    Article  CAS  PubMed  Google Scholar 

  39. Scharf P, Müller J. Nucleic acids with metal-mediated base pairs and their applications. Chempluschem. 2013;78:20–34.

    Article  CAS  Google Scholar 

  40. Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res. 2014;47:45–55.

    Article  CAS  PubMed  Google Scholar 

  41. Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning exciton coupling of merocyanine nucleoside dimers by RNA, DNA and GNA double helix conformations. Angew Chem Int Ed. 2022;61:e202116783.

    Article  CAS  Google Scholar 

  42. Seo YJ, Rhee H, Joo T, Kim BH. Self-duplex formation of an A Py-substituted oligodeoxyadenylate and its unique fluorescence. J Am Chem Soc. 2007;129:5244–7.

    Article  CAS  PubMed  Google Scholar 

  43. Okamoto A, Kanatani K, Saito I. Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP typing. J Am Chem Soc. 2004;126:4820–7.

    Article  CAS  PubMed  Google Scholar 

  44. Skorobogatyi MV, Malakhov AD, Pchelintseva AA, Turban AA, Bondarev SL, Korshun VA. Fluorescent 5-Alkynyl-2′-Deoxyuridines: High Emission Efficiency of a Conjugated Perylene Nucleoside in a DNA Duplex. ChemBioChem. 2006;7:810–6.

    Article  CAS  PubMed  Google Scholar 

  45. Börjesson K, Preus S, El-Sagheer AH, Brown T, Albinsson B, Wilhelmsson LM. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems. J Am Chem Soc. 2009;131:4288–93.

    Article  PubMed  Google Scholar 

  46. Han JH, Yamamoto S, Park S, Sugiyama H. Development of a Vivid FRET System Based on a Highly Emissive dG-dC Analogue Pair. Chem A Eur J. 2017;23:7607–13.

    Article  CAS  Google Scholar 

  47. Okamura H, Trinh GH, Dong Z, Masaki Y, Seio K, Nagatsugi F. Selective and stable base pairing by alkynylated nucleosides featuring a spatially-separated recognition interface. Nucleic Acids Res. 2022;50:3042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morihiro K, Moriyama Y, Nemoto Y, Osumi H, Okamoto A. Anti–syn Unnatural Base Pair Enables Alphabet-Expanded DNA Self-Assembly. J Am Chem Soc. 2021;143:14207–17.

    Article  CAS  PubMed  Google Scholar 

  49. Takezawa Y, Suzuki A, Nakaya M, Nishiyama K, Shionoya M. Metal-Dependent DNA Base Pairing of 5-Carboxyuracil with Itself and All Four Canonical Nucleobases. J Am Chem Soc. 2020;142:21640–4.

    Article  CAS  PubMed  Google Scholar 

  50. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 2009;37:e14–e14.

    Article  PubMed  Google Scholar 

  51. Malyshev DA, Seo YJ, Ordoukhanian P, Romesberg FE. PCR with an Expanded Genetic Alphabet. J Am Chem Soc. 2009;131:14620–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaul C, Müller M, Wagner M, Schneider S, Carell T. Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. Nat Chem. 2011;3:794–800.

    Article  CAS  PubMed  Google Scholar 

  53. St Johnston D. Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol. 2005;6:363–75.

    Article  Google Scholar 

  54. Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S. Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci. 2003;100:13308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Asanuma H, Akahane M, Kondo N, Osawa T, Kato T, Kashida H. Quencher-free linear probe with multiple fluorophores on an acyclic scaffold. Chem Sci. 2012;3:3165.

    Article  CAS  Google Scholar 

  56. Murayama K, Asanuma H. A Quencher‐Free Linear Probe from Serinol Nucleic Acid with a Fluorescent Uracil Analogue. ChemBioChem. 2020;21:120–8.

    Article  CAS  PubMed  Google Scholar 

  57. Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light‐Controlled Tools. Angew Chem Int Ed. 2012;51:8446–76.

    Article  CAS  Google Scholar 

  58. Lubbe AS, Szymanski W, Feringa BL. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem Soc Rev. 2017;46:1052–79.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshimura Y, Fujimoto K. Ultrafast Reversible Photo-Cross-Linking Reaction: Toward in Situ DNA Manipulation. Org Lett. 2008;10:3227–30.

    Article  CAS  PubMed  Google Scholar 

  60. Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc. 2007;2:203–12.

    Article  CAS  PubMed  Google Scholar 

  61. Goldau T, Murayama K, Brieke C, Steinwand S, Mondal P, Biswas M, et al. Reversible Photoswitching of RNA Hybridization at Room Temperature with an Azobenzene C -Nucleoside. Chem - A Eur J. 2015;21:2845–54.

    Article  CAS  Google Scholar 

  62. Škugor M, Valero J, Murayama K, Centola M, Asanuma H, Famulok M. Orthogonally Photocontrolled Non‐Autonomous DNA Walker. Angew Chem Int Ed. 2019;58:6948–51.

    Article  Google Scholar 

  63. Kamiya Y, Asanuma H. Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine. Acc Chem Res. 2014;47:1663–72.

    Article  CAS  PubMed  Google Scholar 

  64. Wenge U, Wengel J, Wagenknecht HA. Photoinduced Reductive Electron Transfer in LNA:DNA Hybrids: A Compromise between Conformation and Base Stacking. Angew Chem Int Ed. 2012;51:10026–9.

    Article  CAS  Google Scholar 

  65. Zhang RS, McCullum EO, Chaput JC. Synthesis of Two Mirror Image 4-Helix Junctions Derived from Glycerol Nucleic Acid. J Am Chem Soc. 2008;130:5846–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hsieh WC, Martinez GR, Wang A, Wu SF, Chamdia R, Ly DH. Stereochemical conversion of nucleic acid circuits via strand displacement. Commun Chem. 2018;1:89.

    Article  Google Scholar 

  67. Kim KT, Angerani S, Winssinger N. A minimal hybridization chain reaction (HCR) system using peptide nucleic acids. Chem Sci. 2021;12:8218–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murayama K, Yamano Y, Asanuma H. 8-Pyrenylvinyl Adenine Controls Reversible Duplex Formation between Serinol Nucleic Acid and RNA by [2 + 2] Photocycloaddition. J Am Chem Soc. 2019;141:9485–9.

    Article  CAS  PubMed  Google Scholar 

  69. Kovalenko NP, Abdukadyrov AT, Gerko VI, Alfimov MV. Luminescent and photochemical behaviour of diarylethylenes with 3-pyrenyl substituents. J Photochem. 1980;12:59–65.

    Article  CAS  Google Scholar 

  70. Rodrigues-Correia A, Weyel XMM, Heckel A. Four Levels of Wavelength-Selective Uncaging for Oligonucleotides. Org Lett. 2013;15:5500–3.

    Article  CAS  PubMed  Google Scholar 

  71. Fujimoto K, Sasago S, Mihara J, Nakamura S. DNA Photo-cross-linking Using Pyranocarbazole and Visible Light. Org Lett. 2018;20:2802–5.

    Article  CAS  PubMed  Google Scholar 

  72. Nishioka H, Liang X, Kato T, Asanuma H. A Photon-Fueled DNA Nanodevice that Contains Two Different Photoswitches. Angew Chem Int Ed. 2012;51:1165–8.

    Article  CAS  Google Scholar 

  73. Haydell MW, Centola M, Adam V, Valero J, Famulok M. Temporal and Reversible Control of a DNAzyme by Orthogonal Photoswitching. J Am Chem Soc. 2018;140:16868–72.

    Article  CAS  PubMed  Google Scholar 

  74. Yamano Y, Murayama K, Asanuma H. Dual Crosslinking Photo‐Switches for Orthogonal Photo‐Control of Hybridization Between Serinol Nucleic Acid and RNA. Chem – A Eur J. 2021;27:4599–604.

    Article  CAS  Google Scholar 

  75. Murata S, Toyota T, Nomura SM, Nakakuki T, Kuzuya A. Molecular Cybernetics: Challenges toward Cellular Chemical Artificial Intelligence. Adv Funct Mater. 2022;32:2201866.

    Article  CAS  Google Scholar 

  76. Kamiya Y, Donoshita Y, Kamimoto H, Murayama K, Ariyoshi J, Asanuma H. Introduction of 2,6-Diaminopurines into Serinol Nucleic Acid Improves Anti-miRNA Performance. ChemBioChem. 2017;18:1917–22.

    Article  CAS  PubMed  Google Scholar 

  77. Sato F, Kamiya Y, Asanuma H. Syntheses of Base-Labile Pseudo-Complementary SNA and L-aTNA Phosphoramidite Monomers. J Org Chem. 2023. https://doi.org/10.1021/acs.joc.2c01911.

  78. Kashida H, Hattori Y, Tazoe K, Inoue T, Nishikawa K, Ishii K, et al. Bifacial Nucleobases for Hexaplex Formation in Aqueous Solution. J Am Chem Soc. 2018;140:8456–62.

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y, Nagao R, Murayama K, Asanuma H. Orthogonal Amplification Circuits Composed of Acyclic Nucleic Acids Enable RNA Detection. J Am Chem Soc. 2022;144:5887–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Transformative Research Areas “Molecular Cybernetics” JP20H05970 (KM), 20H05968 (KM), JSPS KAKENHI grants JP20K15399 (KM), JP22J01195 (YY), JP22K14792 (YY), and JP21H05025 (HA). AMED under Grant Number 22am0401007 (HA) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Murayama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murayama, K., Yamano, Y. & Asanuma, H. Functionalization of acyclic xenonucleic acid with modified nucleobases. Polym J 55, 743–752 (2023). https://doi.org/10.1038/s41428-023-00776-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00776-7

Search

Quick links