Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thiostrepton alleviates experimental colitis by promoting RORγt ubiquitination and modulating dysbiosis

Abstract

Thiostrepton (TST) is a natural antibiotic with pleiotropic properties. This study aimed to elucidate the therapeutic effect of TST on experimental colitis and identify its targets. The effect of TST on colon inflammation was evaluated in a dextran sulfate sodium (DSS)-induced colitis model and a T-cell transfer colitis model. The therapeutic targets of TST were investigated by cytokine profiling, immunophenotyping and biochemical approaches. The effect of TST on the gut microbiota and its contribution to colitis were evaluated in mice with DSS-induced colitis that were subjected to gut microbiota depletion and fecal microbiota transplantation (FMT). Alterations in the gut microbiota caused by TST were determined by 16S rDNA and metagenomic sequencing. Here, we showed that TST treatment significantly ameliorated colitis in the DSS-induced and T-cell transfer models. Specifically, TST targeted the retinoic acid-related orphan nuclear receptor RORγt to reduce the production of IL-17A by γδ T cells, type 3 innate lymphoid cells (ILC3s) and Th17 cells in mice with DSS-induced colitis. Similarly, TST selectively prevented the development of Th17 cells in the T-cell transfer colitis model and the differentiation of naïve CD4+ T cells into Th17 cells in vitro. Mechanistically, TST induced the ubiquitination and degradation of RORγt by promoting the binding of Itch to RORγt. Moreover, TST also reversed dysbiosis to control colonic inflammation. Taken together, these results from our study describe the previously unexplored role of TST in alleviating colonic inflammation by reducing IL-17A production and modulating dysbiosis, suggesting that TST is a promising candidate drug for the treatment of IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw 16 S rRNA sequencing and metagenomic sequencing data have been deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) with Study No. PRJEB53485. The other data are available from the corresponding author upon reasonable request.

References

  1. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12:720–7. https://doi.org/10.1038/nrgastro.2015.150.

    Article  PubMed  Google Scholar 

  2. Collaborators, GBDIBD. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30. https://doi.org/10.1016/S2468-1253(19)30333-4.

    Article  Google Scholar 

  3. Caruso R, Lo BC, Nunez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 2020;20:411–26. https://doi.org/10.1038/s41577-019-0268-7.

    Article  CAS  PubMed  Google Scholar 

  4. Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–15. https://doi.org/10.1136/gutjnl-2016-312297.

    Article  CAS  PubMed  Google Scholar 

  5. Sokol H. Antibiotics: a trigger for inflammatory bowel disease? Lancet Gastroenterol Hepatol. 2020;5:956–7. https://doi.org/10.1016/S2468-1253(20)30208-9.

    Article  PubMed  Google Scholar 

  6. Maier L, Goemans CV, Wirbel J, Kuhn M, Eberl C, Pruteanu M, et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature. 2021;599:120–4. https://doi.org/10.1038/s41586-021-03986-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nanda KS, Cheifetz AS, Moss AC. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): a meta-analysis. Am J Gastroenterol. 2013;108:40–7. https://doi.org/10.1038/ajg.2012.363.

    Article  CAS  PubMed  Google Scholar 

  8. Hoentjen F, Harmsen HJ, Braat H, Torrice CD, Mann BA, Sartor RB, et al. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice. Gut. 2003;52:1721–7. https://doi.org/10.1136/gut.52.12.1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33–45. https://doi.org/10.1016/j.cell.2007.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strati F, Pujolassos M, Burrello C, Giuffre MR, Lattanzi G, Caprioli F, et al. Antibiotic-associated dysbiosis affects the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in experimental colitis models. Microbiome. 2021;9:39. https://doi.org/10.1186/s40168-020-00991-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–49. https://doi.org/10.1016/j.chom.2008.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature. 2014;510:152–6. https://doi.org/10.1038/nature13279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S, Tolaini M, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity. 2019;51:77–89.e6. https://doi.org/10.1016/j.immuni.2019.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, Zhang B, et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe. 2022;30:17–30.e9. https://doi.org/10.1016/j.chom.2021.11.001.

    Article  CAS  PubMed  Google Scholar 

  15. Tauber SC, Nau R. Immunomodulatory properties of antibiotics. Curr Mol Pharm. 2008;1:68–79.

    Article  CAS  Google Scholar 

  16. Altenburg J, de Graaff CS, van der Werf TS, Boersma WG. Immunomodulatory effects of macrolide antibiotics - part 1: biological mechanisms. Respiration. 2011;81:67–74. https://doi.org/10.1159/000320319.

    Article  CAS  PubMed  Google Scholar 

  17. Almeida L, Dhillon-LaBrooy A, Castro CN, Adossa N, Carriche GM, Guderian M, et al. Ribosome-targeting antibiotics impair T cell effector function and ameliorate autoimmunity by blocking mitochondrial protein synthesis. Immunity. 2021;54:68–83.e6. https://doi.org/10.1016/j.immuni.2020.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 2011;3:725–31. https://doi.org/10.1038/nchem.1114.

    Article  CAS  PubMed  Google Scholar 

  19. Lai CY, Yeh DW, Lu CH, Liu YL, Huang LR, Kao CY, et al. Identification of thiostrepton as a novel inhibitor for psoriasis-like inflammation induced by TLR7-9. J Immunol. 2015;195:3912–21. https://doi.org/10.4049/jimmunol.1500194.

    Article  CAS  PubMed  Google Scholar 

  20. Kim TH, Hanh BTB, Kim G, Lee DG, Park JW, Lee SE, et al. Thiostrepton: a novel therapeutic drug candidate for mycobacterium abscessus infection. Molecules. 2019;24. https://doi.org/10.3390/molecules24244511.

  21. Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res. 2012;40:360–70. https://doi.org/10.1093/nar/gkr623.

    Article  CAS  PubMed  Google Scholar 

  22. Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S, et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol. 2019;20:1631–43. https://doi.org/10.1038/s41590-019-0526-7.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JJ, Shajib MS, Manocha MM, Khan WI. Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp. 2012. https://doi.org/10.3791/3678.

  24. Koelink PJ, Wildenberg ME, Stitt LW, Feagan BG, Koldijk M, van 't Wout AB, et al. Development of reliable, valid and responsive scoring systems for endoscopy and histology in animal models for inflammatory bowel disease. J Crohns Colitis. 2018;12:794–803. https://doi.org/10.1093/ecco-jcc/jjy035.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science. 2015;349:989–93. https://doi.org/10.1126/science.aac4263.

    Article  CAS  PubMed  Google Scholar 

  26. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  27. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–85. https://doi.org/10.1146/annurev-immunol-032414-112123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ichiyama K, Hashimoto M, Sekiya T, Nakagawa R, Wakabayashi Y, Sugiyama Y, et al. Gfi1 negatively regulates T(h)17 differentiation by inhibiting RORgammat activity. Int Immunol. 2009;21:881–9. https://doi.org/10.1093/intimm/dxp054.

    Article  CAS  PubMed  Google Scholar 

  29. Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417–21. https://doi.org/10.1038/nature13979.

    Article  CAS  PubMed  Google Scholar 

  30. Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor gammat (RORgammat) in Th17 cells. J Biol Chem. 2014;289:25546–55. https://doi.org/10.1074/jbc.M114.565291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination. Nat Immunol. 2016;17:997–1004. https://doi.org/10.1038/ni.3488.

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Xu P, Han L, Guo Z, Wang X, Chen Z, et al. Cutting edge: Ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORgammat. J Immunol. 2015;194:4094–7. https://doi.org/10.4049/jimmunol.1401451.

    Article  CAS  PubMed  Google Scholar 

  33. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 2021;66:103293. https://doi.org/10.1016/j.ebiom.2021.103293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Zhang H, Chen T, Shi L, Wang D, Tang D. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal. 2022;20:64. https://doi.org/10.1186/s12964-022-00869-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM, et al. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53–8. https://doi.org/10.2174/1874091X01004010053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Isono F, Fujita-Sato S, Ito S. Inhibiting RORgammat/Th17 axis for autoimmune disorders. Drug Discov Today. 2014;19:1205–11. https://doi.org/10.1016/j.drudis.2014.04.012.

    Article  CAS  PubMed  Google Scholar 

  38. Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature. 2011;472:486–90. https://doi.org/10.1038/nature09978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–8. https://doi.org/10.1038/s41586-019-1785-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40:477–89. https://doi.org/10.1016/j.immuni.2014.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011;472:491–4. https://doi.org/10.1038/nature10075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22:319–23. https://doi.org/10.1038/nm.4046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science. 356. https://doi.org/10.1126/science.aal3755 (2017).

  44. Slabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M, Bunker RD, et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature. 2020;585:293–7. https://doi.org/10.1038/s41586-020-2374-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5. https://doi.org/10.1126/science.1244851.

    Article  CAS  PubMed  Google Scholar 

  46. Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature. 2015;523:183–8. https://doi.org/10.1038/nature14610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Isobe Y, Okumura M, McGregor LM, Brittain SM, Jones MD, Liang X, et al. Manumycin polyketides act as molecular glues between UBR7 and P53. Nat Chem Biol. 2020;16:1189–98. https://doi.org/10.1038/s41589-020-0557-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature. 2020;577:410–5. https://doi.org/10.1038/s41586-019-1865-0.

    Article  CAS  PubMed  Google Scholar 

  49. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science. 2015;349:993–7. https://doi.org/10.1126/science.aaa9420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U, Beckstette M, et al. Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 2016;9:444–57. https://doi.org/10.1038/mi.2015.74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0507900), the National Natural Science Foundation of China (81802460) and the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0184). We thank Hongwei Li (Third Military Medical University, Chongqing, China) for technical assistance in molecular docking. We thank Dr. Lilin Ye and Dr. Jihang Zhang (Third Military Medical University, Chongqing, China) for the fruitful discussions and review of our manuscript and for helping with the FACS experiment.

Author information

Authors and Affiliations

Authors

Contributions

YL, CL and YL were involved in the study design and drafted the paper; YL, CL and YL performed all the experiments with the help of XLZ and JL. SMY and CJH devised, coordinated, and supervised the project.

Corresponding authors

Correspondence to Changjiang Hu or Shiming Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Liu, C., Luo, Y. et al. Thiostrepton alleviates experimental colitis by promoting RORγt ubiquitination and modulating dysbiosis. Cell Mol Immunol 20, 1352–1366 (2023). https://doi.org/10.1038/s41423-023-01085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01085-y

Keywords

Search

Quick links