Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LNCGM1082-mediated NLRC4 activation drives resistance to bacterial infection

Abstract

The activation of NLRC4 is a major host response against intracellular bacteria infection. However, NLRC4 activation after a host senses diverse stimuli is difficult to understand. Here, we found that the lncRNA LNCGM1082 plays a critical role in the activation of NLRC4. LNCGM1082 in macrophages affects the maturation of interleukin (IL)-1β and pyroptotic cell death only after exposure to an NLRC4 ligand. Similar to NLRC4−/− mice, LNCGM1082−/− mice were highly sensitive to Salmonella Typhimurium (S. T) infection. LNCGM1082 deficiency in mouse or human macrophages inhibited IL-1β maturation and pyroptosis. Mechanistically, LNCGM1082 induced the binding of PKCδ with NLRC4 in both mice and humans. In contrast, NLRC4 did not bind PKCδ in LNCGM1082−/− macrophages. The activity of the lncRNA LNCGM1082 induced by S. T may be mediated through TLR5 in the macrophages of both mice and humans. In summary, our data indicate that TLR5-mediated LNCGM1082 activity can promote the binding of PKCδ with NLRC4 to activate NLRC4 and induce resistance to bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data from the microarray are available through the GEO database (Supplementary Fig. 3: Accession Number: GSE221313; Supplementary Fig. 9A: Accession Number: GSE173399; and Supplementary Fig. 14A, Accession Number: GSE173398).

References

  1. Kay C, Wang R, Kirkby M, Man SM. Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol Rev. 2020;297:67–82.

    Article  CAS  PubMed  Google Scholar 

  2. Duncan JA, Canna SW. The NLRC4 Inflammasome. Immunol Rev. 2018;281:115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–22.

    Article  CAS  PubMed  Google Scholar 

  4. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165:792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596–600.

    Article  CAS  PubMed  Google Scholar 

  6. Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 2018;107:455–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev. 2015;265:85–102.

    Article  CAS  PubMed  Google Scholar 

  8. Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M, et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature. 2012;490:539–42.

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Liu X, Li Y, Zhao J, Liu Z, Hu Z, et al. LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella Typhimurium infection. J Exp Med. 2017;214:3051–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koh EH, Yoon JE, Ko MS, Leem J, Yun JY, Hong CH, et al. Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut. 2021;70:1954–64.

  11. Yang F, Yang Y, Zeng W. Blockade of anti-dsDNA ameliorates systemic lupus erythematosus in MRL/Faslpr mice through ameliorating inflammation via the PKCdelta-NLRC4 axis. Biochem Cell Biol. 2021;99:313–21.

    Article  CAS  PubMed  Google Scholar 

  12. Raghawan AK, Sripada A, Gopinath G, Pushpanjali P, Kumar Y, Radha V, et al. A disease-associated mutant of NLRC4 shows enhanced interaction with SUG1 leading to constitutive FADD-dependent caspase-8 activation and cell death. J Biol Chem. 2017;292:1218–30.

    Article  CAS  PubMed  Google Scholar 

  13. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  16. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson KM, Anderson DM, McAnally JR, Shelton JM, Bassel-Duby R, Olson EN. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature. 2016;539:433–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Y, Sun W, Shang W, Li Y, Zhang D, Wang T, et al. Lnc-C/EBPbeta negatively regulates the suppressive function of myeloid-derived suppressor cells. Cancer Immunol Res. 2018;6:1352–63.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 2019;10:1495.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.

    Article  CAS  PubMed  Google Scholar 

  22. Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol. 2019;20:527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019;570:338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12:959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 2010;207:1745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15:721–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Man SM, Hopkins LJ, Nugent E, Cox S, Gluck IM, Tourlomousis P, et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA. 2014;111:7403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity. 2017;46:649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sellin ME, Muller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe. 2014;16:237–48.

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Ding S, Jiang H, Liu G. Roles of macrophages in the development and treatment of gut inflammation. Front Cell Dev Biol. 2021;9:625423.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perkins DJ, Rajaiah R, Tennant SM, Ramachandran G, Higginson EE, Dyson TN, et al. Salmonella typhimurium co-opts the host type I IFN system to restrict macrophage innate immune transcriptional responses selectively. J Immunol. 2015;195:2461–71.

    Article  CAS  PubMed  Google Scholar 

  32. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32.

    Article  CAS  PubMed  Google Scholar 

  33. Qi H, Wei J, Gao Y, Yang Y, Li Y, Zhu H, et al. Reg4 and complement factor D prevent the overgrowth of E. coli in the mouse gut. Commun Biol. 2020;3:483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gram AM, Wright JA, Pickering RJ, Lam NL, Booty LM, Webster SJ, et al. Salmonella flagellin activates NAIP/NLRC4 and canonical NLRP3 inflammasomes in human macrophages. J Immunol. 2021;206:631–40.

    Article  CAS  PubMed  Google Scholar 

  35. Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ, Yan BM, et al. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci USA. 2017;114:13242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2003;4:1247–53.

    Article  CAS  PubMed  Google Scholar 

  37. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7:569–75.

    Article  CAS  PubMed  Google Scholar 

  38. Ghoneim HE, Thomas PG, McCullers JA. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J Immunol. 2013;191:1250–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Wang P, Zhang Y, Xu J, Li Z, Li Z, et al. Decreased expression of the host long-noncoding RNA-GM facilitates viral escape by inhibiting the kinase activity TBK1 via S-glutathionylation. Immunity. 2020;53:1168–81.e7.

    Article  CAS  PubMed  Google Scholar 

  40. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saha S, Kiran M, Kuscu C, Chatrath A, Wotton D, Mayo MW, et al. Long noncoding RNA DRAIC inhibits prostate cancer progression by interacting with IKK to inhibit NF-kappaB activation. Cancer Res. 2020;80:950–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 2020;11:3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koirala P, Huang J, Ho TT, Wu F, Ding X, Mo YY. LncRNA AK023948 is a positive regulator of AKT. Nat Commun. 2017;8:14422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, et al. IRF8 regulates transcription of naips for NLRC4 inflammasome activation. Cell. 2018;173:920–33.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tenthorey JL, Chavez RA, Thompson TW, Deets KA, Vance RE, Rauch I. NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma. J Exp Med. 2020;217:e20191736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011;477:592–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qu Y, Misaghi S, Newton K, Maltzman A, Izrael-Tomasevic A, Arnott D, et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. 2016;213:877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science. 2015;350:399–404.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 2015;350:404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki S, Franchi L, He Y, Munoz-Planillo R, Mimuro H, Suzuki T, et al. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcdelta. PLoS Pathog. 2014;10:e1003926.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310–3.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Zhang J, Liu X, Li S, Wang Q, Di C, et al. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat Commun. 2018;9:1572.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cao S, Su X, Zeng B, Yan H, Huang Y, Wang E, et al. The gut epithelial receptor LRRC19 promotes the recruitment of immune cells and gut inflammation. Cell Rep. 2016;14:695–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Su X, Min S, Cao S, Yan H, Zhao Y, Li H, et al. LRRC19 expressed in the kidney induces TRAF2/6-mediated signals to prevent infection by uropathogenic bacteria. Nat Commun. 2014;5:4434.

    Article  CAS  PubMed  Google Scholar 

  55. Shang W, Gao Y, Tang Z, Zhang Y, Yang R. The pseudogene Olfr29-ps1 promotes the suppressive function and differentiation of monocytic MDSCs. Cancer Immunol Res. 2019;7:813–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NSFC grants (grant numbers 81901677, 82271779, 91842302, 81970457, and 91629102); The Tianjin Science and Technology Commission (grant number, 18JCZDJC35300); A Ministry of Science and Technology (grant number, 2016YFC1303604); The State Key Laboratory of Medicinal Chemical Biology and the Fundamental Research Funds for the Central University, Nankai university (63191724).

Author information

Authors and Affiliations

Authors

Contributions

RY designed the research and wrote the paper; YG conducted in vivo and in vitro experiments for identifying mechanisms of action; YY and QZ conducted most of the in vivo experiments and immunoassays; JW, JY, YW, MJ, RW, and XY performed some of the in vitro experiments; JZ, XL offered assistance for the ITC analyses, and YZ offered assistance for the animal experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rongcun Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Yang, Y., Wei, J. et al. LNCGM1082-mediated NLRC4 activation drives resistance to bacterial infection. Cell Mol Immunol 20, 475–488 (2023). https://doi.org/10.1038/s41423-023-00995-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-00995-1

Keywords

Search

Quick links