Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Point mutations in the gene encoding IP3 receptor subtype 3 cause impairment in T-cell and B-cell immune responses via dysfunctional Ca2+ mobilization

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Neumann J, Nieuwenhove EV, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, et al. Disrupted Ca2+ homeostasis and immunodeficiency in patients with functional Inositol 1,4,5-trisphosphate receptor subtype 3 defects. Cell Mol Immunol. 2023;20:11–25.

  2. Prole DL, Taylor CW. Structure and function of IP3 receptors. Cold Spring Harb Perspect Biol. 2019;11:a035063.

    Article  CAS  Google Scholar 

  3. Woll KA, Van Petegem F. Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol Rev. 2022;102:209–68. https://doi.org/10.1152/physrev.00033.2020

    Article  CAS  Google Scholar 

  4. Trebak M, Kinet JP. Calcium signalling in T cells. Nat Rev Immunol. 2019;19:154–69.

    Article  CAS  Google Scholar 

  5. Park YJ, Yoo SA, Kim M, Kim WU. The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Front Immunol. 2020;11:195.

    Article  CAS  Google Scholar 

  6. Nagaleekar VK, Diehl SA, Juncadella I, Charland C, Muthusamy N, Eaton S, et al. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. J Immunol. 2008;181:8315–22.

    Article  CAS  Google Scholar 

  7. Nadeem A, Al-Harbi NO, Ansari MA, Al-Harbi MM, El-Sherbeeny AM, Zoheir KMA, et al. Psoriatic inflammation enhances allergic airway inflammation through IL-23/STAT3 signaling in a murine model. Biochem Pharmacol. 2017;124:69–82.

    Article  CAS  Google Scholar 

  8. Gambardella J, Lombardi A, Morelli MB, Ferrara J, Santulli G. Inositol 1,4,5-trisphosphate receptors in human disease: a comprehensive update. J Clin Med. 2020;9:1096.

    Article  CAS  Google Scholar 

  9. Kerkhofs M, Seitaj B, Ivanova H, Monaco G, Bultynck G, Parys JB. Pathophysiological consequences of isoform-specific IP3 receptor mutations. Biochim Biophys Acta Mol Cell Res. 2018;1865:1707–17.

    Article  CAS  Google Scholar 

  10. Zheng S, Wang X, Zhao D, Liu H, Hu Y. Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communications. Trends Cell Biol. 2022;S0962-8924:00174.

    Google Scholar 

  11. Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov. 2021;16:709–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Nadeem or Sheikh F. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, A., Ahmad, S.F. Point mutations in the gene encoding IP3 receptor subtype 3 cause impairment in T-cell and B-cell immune responses via dysfunctional Ca2+ mobilization. Cell Mol Immunol 20, 214–216 (2023). https://doi.org/10.1038/s41423-022-00938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00938-2

Search

Quick links