Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The circular RNA circINPP4B acts as a sponge of miR-30a to regulate Th17 cell differentiation during progression of experimental autoimmune encephalomyelitis

Abstract

Circular RNAs (circRNAs) regulate gene expression and participate in various biological and pathological processes. However, little is known about the effects of specific circRNAs on T helper cell 17 (Th17) differentiation and related autoimmune diseases, such as multiple sclerosis (MS). Here, using transcriptome microarray analysis at different stages of experimental autoimmune encephalomyelitis (EAE), we identified the EAE progression-related circINPP4B, which showed upregulated expression in Th17 cells from mice with EAE and during Th17 differentiation in vitro. Silencing of circINPP4B inhibited Th17 differentiation and alleviated EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. Mechanistically, circINPP4B served as a sponge that directly targeted miR-30a to regulate Th17 differentiation. Furthermore, circINPP4B levels were associated with the developing phases of clinical relapsing-remitting MS patients. Our results indicate that circINPP4B plays an important role in promoting Th17 differentiation and progression of EAE by targeting miR-30a, which provides a potential diagnostic and therapeutic target for Th17-mediated MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M. Multiple sclerosis: therapeutic applications of advancing drug delivery systems. Biomed Pharmacother. 2017;86:343–53.

    Article  CAS  PubMed  Google Scholar 

  2. Popescu BF, Lucchinetti CF. Pathology of demyelinating diseases. Annu Rev Pathol. 2012;7:185–217.

    Article  CAS  PubMed  Google Scholar 

  3. Duffy SS, Lees JG, Moalem-Taylor G. The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int. 2014;2014:285245.

    PubMed  PubMed Central  Google Scholar 

  4. Ramaglia V, Rojas O, Naouar I, Gommerman JL. The Ins and Outs of Central Nervous System Inflammation-Lessons Learned from Multiple Sclerosis. Annu Rev Immunol. 2021;39:199–226.

    Article  CAS  PubMed  Google Scholar 

  5. Matsui M. [Immunology for understanding the pathogenesis of multiple sclerosis]. Rinsho Shinkeigaku. 2013;53:898–901.

    Article  PubMed  Google Scholar 

  6. Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev. 2020;19:102647.

    Article  CAS  PubMed  Google Scholar 

  7. Qu X, Han J, Zhang Y, Wang X, Fan H, Hua F, et al. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation during experimental autoimmune encephalomyelitis development. J Neuroinflammation. 2019;16:183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain: J Neurol. 2009;132:3329–41.

    Article  Google Scholar 

  9. Paradowska A, Maślińiski W, Grzybowska-Kowalczyk A, Łacki J. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Arch Immunol Ther Exp (Warsz.) 2007;55:329–34.

    Article  CAS  Google Scholar 

  10. Quinn JL, Kumar G, Agasing A, Ko RM, Axtell RC. Role of TFH Cells in Promoting T Helper 17-Induced Neuroinflammation. Front Immunol. 2018;9:382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Qu X, Han J, Zhang Y, Wang Y, Zhou J, Fan H, et al. MiR-384 Regulates the Th17/Treg Ratio during Experimental Autoimmune Encephalomyelitis Pathogenesis. Front Cell Neurosci. 2017;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y, et al. Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci. 2014;11:810–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dolati S, Marofi F, Babaloo Z, Aghebati-Maleki L, Roshangar L, Ahmadi M, et al. Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis. Biomed Pharmacother. 2018;104:280–90.

    Article  CAS  PubMed  Google Scholar 

  14. Qu X, Zhou J, Wang T, Han J, Ma L, Yu H, et al. MiR-30a inhibits Th17 differentiation and demyelination of EAE mice by targeting the IL-21R. Brain Behav Immun. 2016;57:193–9.

    Article  CAS  PubMed  Google Scholar 

  15. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44.

    Article  CAS  PubMed  Google Scholar 

  16. Verduci L, Strano S, Yarden Y, Blandino G. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13:669–80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang C, Hu J, Yu Y. CircRNA Is a Rising Star in Researches of Ocular Diseases. Front Cell Dev Biol. 2020;8:850.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77:1661–80.

    Article  CAS  PubMed  Google Scholar 

  19. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  PubMed  Google Scholar 

  20. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D’Ambra E, Capauto D, Morlando M. Exploring the Regulatory Role of Circular RNAs in Neurodegenerative Disorders. Int J Mol Sci. 2019;20:5477.

    Article  PubMed Central  CAS  Google Scholar 

  23. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, et al. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer. 2018;17:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bi J, Liu H, Dong W, Xie W, He Q, Cai Z, et al. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Mol Cancer. 2019;18:133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain:J Neurol. 2012;135:886–99.

    Article  Google Scholar 

  26. Casella G, Rasouli J, Boehm A, Zhang W, Xiao D, Ishikawa L, et al. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci Transl Med. 2020;12:eaba0599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishihara A, Ishihara J, Watkins EA, Tremain AC, Nguyen M, Solanki A, et al. Prolonged residence of an albumin-IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat Biomed Eng. 2021;5:387–98.

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;388:208–19.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar L, Shamsuzzama, Haque R, Baghel T, Nazir A. Circular RNAs: the Emerging Class of Non-coding RNAs and Their Potential Role in Human Neurodegenerative Diseases. Mol Neurobiol. 2017;54:7224–34.

    Article  CAS  PubMed  Google Scholar 

  30. Shen L, Bai Y, Han B, Yao H. Non-coding RNA and neuroinflammation: implications for the therapy of stroke. Stroke Vasc Neurol. 2019;4:96–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019;177:865–80. e821

    Article  CAS  PubMed  Google Scholar 

  32. Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, Castillo-Triviño T, Olascoaga J, Otaegui D. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet. 2017;26:3564–72.

    Article  CAS  PubMed  Google Scholar 

  33. Paraboschi EM, Cardamone G, Soldà G, Duga S, Asselta R. Interpreting Non-coding Genetic Variation in Multiple Sclerosis Genome-Wide Associated Regions. Front Genet. 2018;9:647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zurawska A, Mycko MP, Selmaj KW. Dominant role of circular RNA in miRNA circuit in multiple sclerosis. Mult Scler J. 2018;24:P1074.

    Google Scholar 

  35. Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis. J Neuroimmunol. 2019;334:576971.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu E, Wang X, Zheng B, Wang Q, Hao J, Chen S, et al. miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORgammat and STAT3. J Immunol. 2014;192:5599–609.

    Article  CAS  PubMed  Google Scholar 

  37. Mycko MP, Cichalewska M, Cwiklinska H, Selmaj KW. miR-155-3p Drives the Development of Autoimmune Demyelination by Regulation of Heat Shock Protein 40. J Neurosci: Off J Soc Neurosci. 2015;35:16504–15.

    Article  CAS  Google Scholar 

  38. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10:1252–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wu R, He Q, Chen H, Xu M, Zhao N, Xiao Y, et al. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem Biophys Res Commun. 2017;486:759–66.

    Article  CAS  PubMed  Google Scholar 

  40. Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J, et al. MicroRNA-15b Suppresses Th17 Differentiation and Is Associated with Pathogenesis of Multiple Sclerosis by Targeting O-GlcNAc Transferase. J Immunol. 2017;198:2626–39.

    Article  CAS  PubMed  Google Scholar 

  41. Liu R, Li Y, Zhou H, Wang H, Liu D, Wang H, et al. OIP5-AS1 facilitates Th17 differentiation and EAE severity by targeting miR-140-5p to regulate RhoA/ROCK2 signaling pathway. Life Sci. 119108 (2021).

  42. Guan D, Li Y, Cui Y, Guo Y, Dong N, Li G, et al. Down-regulated miR-374c and Hsp70 promote Th17 cell differentiation by inducing Fas expression in experimental autoimmune encephalomyelitis. Int J Biol Macromol. 2020;154:1158–65.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao M, Sun D, Guan Y, Wang Z, Sang D, Liu M, et al. Disulfiram and Diphenhydramine Hydrochloride Upregulate miR-30a to Suppress IL-17-Associated Autoimmune Inflammation. J Neurosci: Off J Soc Neurosci. 2016;36:9253–66.

    Article  CAS  Google Scholar 

  44. Gao Y, Han D, Feng J. MicroRNA in multiple sclerosis. Clin Chim Acta; Int J Clin Chem. 2021;516:92–9.

    Article  CAS  Google Scholar 

  45. Schiavinato J, Haddad R, Saldanha-Araujo F, Baiochi J, Araujo AG, Santos Scheucher P, et al. TGF-beta/atRA-induced Tregs express a selected set of microRNAs involved in the repression of transcripts related to Th17 differentiation. Sci Rep. 2017;7:3627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yang Q, Pan W, Qian L. Identification of the miRNA-mRNA regulatory network in multiple sclerosis. Neurol Res. 2017;39:142–51.

    Article  CAS  PubMed  Google Scholar 

  47. Quintana E, Ortega FJ, Robles-Cedeño R, Villar ML, Buxó M, Mercader JM, et al. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler. 2017;23:1716–26.

    Article  CAS  PubMed  Google Scholar 

  48. Teymoori-Rad M, Mozhgani SH, Zarei-Ghobadi M, Sahraian MA, Nejati A, Amiri MM, et al. Integrational analysis of miRNAs data sets as a plausible missing linker between Epstein-Barr virus and vitamin D in relapsing remitting MS patients. Gene. 2019;689:1–10.

    Article  CAS  PubMed  Google Scholar 

  49. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Affiliated Hospital of Xuzhou Medical University for the clinical samples. We thank the Majorbio Cloud Platform for microarray data analysis. This research was supported by the National Natural Science Foundation of China (81771337, 81271345), The National Key R&D Program of China (2017YFA0104202), The Natural Science Foundation of Jiangsu Province (BK20161174), the 333 Project of Jiangsu Province, The Xuzhou Basic Research Science and Technology Project (KC19059) and Xuzhou Medical University Scientific Research Fund for Talents.

Author information

Authors and Affiliations

Authors

Contributions

JJH: designed the research, performed the experiments, analyzed the data, and wrote the paper. WZ: performed the experiments and analyzed the data. WHF: performed the experiments and analyzed the data. FXD: performed the experiments and analyzed the data. FH: designed the research and analyzed the data. RQY: designed the research and analyzed the data. XBQ designed the research, performed the experiments, analyzed the data, and wrote the paper.

Corresponding authors

Correspondence to Ruiqin Yao or Xuebin Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhuang, W., Feng, W. et al. The circular RNA circINPP4B acts as a sponge of miR-30a to regulate Th17 cell differentiation during progression of experimental autoimmune encephalomyelitis. Cell Mol Immunol 18, 2177–2187 (2021). https://doi.org/10.1038/s41423-021-00748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00748-y

Keywords

This article is cited by

Search

Quick links