Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unraveling female reproductive senescence to enhance healthy longevity

Abstract

In a society where women often want successful careers and equal opportunities to men, the early nature of ovarian aging often forces women to make difficult life choices between career and family development. Fertility in women begins to decline after the age of 37 years and it is rare for pregnancies to occur after 45. This reproductive decline in women is inevitable and culminates in menopause, which is a major driver of age-related diseases. In a world where biomedical advances are leading to modifiable biological outcomes, it is time to focus on mitigating female reproductive senescence to maintain fertility and preserve age-related hormonal functions, with the goal of providing increased life choices and enhancing healthspan. To date, reproductive longevity research remains an understudied field. More needs to be done to unravel the biology of the ovarian follicles, which are the functional units of reproductive lifespan and are comprised of cell types including the oocyte (female gamete) and a group of specialized supporting somatic cells. Biological attempts to maintain the quality and quantity of follicles in animal models through manipulating pathways involved in aging can potentially prolong female reproductive lifespan and healthspan. Here, we summarize the molecular events driving ovarian aging and menopause and the interventional strategies to offset these events. Developing solutions to female reproductive senescence will open doors to discover ways to enhance true healthy longevity for both men and women.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ovarian follicles: the functional units of ovary for reproductive lifespan.
Fig. 2: Post-reproductive lifespan across species.36
Fig. 3: The post-reproductive lifespan is a result of a hypoestrogenic environment that has pleiotropic health effects.

References

  1. United Nations Department of Economic and Social Affairs. World Mortality 2019 Data Booklet (United Nations Department of Economic and Social Affairs, 2019).

  2. Ginter, E. & Simko, V. Women live longer than men. Bratisl. Lek. Listy 114, 45–49 (2013).

    CAS  Google Scholar 

  3. Li, Q. et al. Current understanding of ovarian aging. Sci. China Life Sci. 55, 659–669 (2012).

    Article  CAS  Google Scholar 

  4. Dou, X. et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell 16, 825–836 (2017).

    Article  CAS  Google Scholar 

  5. Zhang, J. et al. Can ovarian aging be delayed by pharmacological strategies? Aging 11, 817–832 (2019).

    Article  Google Scholar 

  6. Garcia, D. N. et al. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience 41, 395–408 (2019).

    Article  CAS  Google Scholar 

  7. Faddy, M. J., Gosden, R. G., Gougeon, A., Richardson, S. J. & Nelson, J. F. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum. Reprod. 7, 1342–1346 (1992).

    Article  CAS  Google Scholar 

  8. Broekmans, F. J., Soules, M. R. & Fauser, B. C. Ovarian aging: mechanisms and clinical consequences. Endocr. Rev. 30, 465–493 (2009).

    Article  CAS  Google Scholar 

  9. Santoro, N. The menopausal transition. Am. J. Med. 118(Suppl 12B), 8–13 (2005).

    Article  Google Scholar 

  10. Laven, J. S. Genetics of early and normal menopause. Semin. Reprod. Med. 33, 377–383 (2015).

    Article  Google Scholar 

  11. Zhu, D., Li, X., Macrae, V. E., Simoncini, T. & Fu, X. Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol. Metab. 29, 571–580 (2018).

    Article  CAS  Google Scholar 

  12. Lizcano, F. & Guzman, G. Estrogen deficiency and the origin of obesity during menopause. Biomed. Res. Int. 2014, 757461 (2014).

    Article  Google Scholar 

  13. Song, X. et al. Reproductive and hormonal factors and risk of cognitive impairment among Singapore Chinese women. Am. J. Obstet. Gynecol. 223, 410.e411–410.e423 (2020).

    Article  Google Scholar 

  14. Muka, T. et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 1, 767–776 (2016).

    Article  Google Scholar 

  15. Thong, E. P., Codner, E., Laven, J. S. E. & Teede, H. Diabetes: a metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol. 8, 134–149 (2020).

    Article  CAS  Google Scholar 

  16. Geraci, A. et al. Sarcopenia and menopause: the role of estradiol. Front. Endocrinol. 12, 682012 (2021).

    Article  Google Scholar 

  17. Zhu, D. et al. Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data. Lancet Public Health 4, e553–e564 (2019).

    Article  Google Scholar 

  18. Scheffer, G. J. et al. The number of antral follicles in normal women with proven fertility is the best reflection of reproductive age. Hum. Reprod. 18, 700–706 (2003).

    Article  CAS  Google Scholar 

  19. Drummond, A. E. The role of steroids in follicular growth. Reprod. Biol. Endocrinol. 4, 16–16 (2006).

    Article  Google Scholar 

  20. Khosla, S., Oursler, M. J. & Monroe, D. G. Estrogen and the skeleton. Trends Endocrinol. Metab. 23, 576–581 (2012).

    Article  CAS  Google Scholar 

  21. Russell, J. K., Jones, C. K. & Newhouse, P. A. The role of estrogen in brain and cognitive aging. Neurotherapeutics 16, 649–665 (2019).

    Article  CAS  Google Scholar 

  22. Wilkinson, H. N. & Hardman, M. J. The role of estrogen in cutaneous ageing and repair. Maturitas 103, 60–64 (2017).

    Article  CAS  Google Scholar 

  23. Knowlton, A. A. & Lee, A. R. Estrogen and the cardiovascular system. Pharmacol. Ther. 135, 54–70 (2012).

    Article  CAS  Google Scholar 

  24. Sitruk-Ware, R. & El-Etr, M. Progesterone and related progestins: potential new health benefits. Climacteric 16, 69–78 (2013).

    Article  CAS  Google Scholar 

  25. Gleicher, N., Weghofer, A. & Barad, D. H. Defining ovarian reserve to better understand ovarian aging. Reprod. Biol. Endocrinol. 9, 23 (2011).

    Article  Google Scholar 

  26. Mesiano, S., Jones, E. E. Chapter 55: The female reproductive system. In: Medical physiology 3rd ed. (eds Boron, W., Boulpaep, E.) (Philadelphia, Elsevier, 2017).

  27. Pellestor, F., Anahory, T. & Hamamah, S. Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet. Genome Res. 111, 206–212 (2005).

    Article  CAS  Google Scholar 

  28. Kuliev, A., Cieslak, J. & Verlinsky, Y. Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenet. Genome Res. 111, 193–198 (2005).

    Article  CAS  Google Scholar 

  29. Battaglia, D. E., Goodwin, P., Klein, N. A. & Soules, M. R. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum. Reprod. 11, 2217–2222 (1996).

    Article  CAS  Google Scholar 

  30. Liu, Y. et al. Age-related changes in the mitochondria of human mural granulosa cells. Hum. Reprod. 32, 2465–2473 (2017).

    Article  CAS  Google Scholar 

  31. Seifer, D. B., DeJesus, V. & Hubbard, K. Mitochondrial deletions in luteinized granulosa cells as a function of age in women undergoing in vitro fertilization. Fertil. Steril. 78, 1046–1048 (2002).

    Article  Google Scholar 

  32. Sreerangaraja Urs, D. B. et al. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int. J. Mol. Sci. 21, 3592 (2020).

    Article  Google Scholar 

  33. Tatone, C. et al. Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing. Hum. Reprod. 26, 1843–1859 (2011).

    Article  CAS  Google Scholar 

  34. Chang, Y., Li, J., Li, X., Liu, H. & Liang, X. Egg quality and pregnancy outcome in young infertile women with diminished ovarian reserve. Med. Sci. Monit. 24, 7279–7284 (2018).

    Article  CAS  Google Scholar 

  35. Pollycove, R., Naftolin, F. & Simon, J. A. The evolutionary origin and significance of menopause. Menopause 18, 336–342 (2011).

    Article  Google Scholar 

  36. Ellis, S. et al. Postreproductive lifespans are rare in mammals. Ecol. Evol. 8, 2482–2494 (2018).

    Article  Google Scholar 

  37. Hawkes, K. Human longevity: the grandmother effect. Nature 428, 128–129 (2004).

    Article  CAS  Google Scholar 

  38. Hawkes, K., O’Connell, J. F., Jones, N. G., Alvarez, H. & Charnov, E. L. Grandmothering, menopause, and the evolution of human life histories. Proc. Natl. Acad. Sci. USA 95, 1336–1339 (1998).

    Article  CAS  Google Scholar 

  39. Whitehead, H. Life history evolution: what does a menopausal killer whale do? Curr. Biol. 25, R225–R227 (2015).

    Article  CAS  Google Scholar 

  40. Singh, A., Kaur, S. & Walia, I. A historical perspective on menopause and menopausal age. Bull. Indian Inst. Hist. Med. Hyderabad 32, 121–135 (2002).

    Google Scholar 

  41. Velez, M. P. et al. Age at natural menopause and physical functioning in postmenopausal women: the Canadian Longitudinal Study on Aging. Menopause 26, 958–965 (2019).

    Article  Google Scholar 

  42. Vasold, M. [Mortality in Nuremberg in the 19th century (about 1800 to 1913)]. Wurzbg Medizinhist Mitt 25, 241–338 (2006).

    Google Scholar 

  43. Anderson, R. N. Deaths: leading causes for 2000. Natl. Vital Stat. Rep. 50, 1–85 (2002).

    Google Scholar 

  44. Shaw-Taylor, L. An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Econ. Hist. Rev. 73, E1–E19 (2020).

    Article  Google Scholar 

  45. Oeppen, J. & Vaupel, J. W. Demography. Broken limits to life expectancy. Science 296, 1029–1031 (2002).

    Article  CAS  Google Scholar 

  46. Xirocostas, Z. A., Everingham, S. E. & Moles, A. T. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Biol. Lett. 16, 20190867 (2020).

    Article  CAS  Google Scholar 

  47. Hawkes, K. & Smith, K. R. Do women stop early? Similarities in fertility decline in humans and chimpanzees. Ann. N. Y. Acad. Sci. 1204, 43–53 (2010).

    Article  Google Scholar 

  48. Wood, B. M., Watts, D. P., Mitani, J. C. & Langergraber, K. E. Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J. Hum. Evol. 105, 41–56 (2017).

    Article  Google Scholar 

  49. Shadyab, A. H. et al. Ages at menarche and menopause and reproductive lifespan as predictors of exceptional longevity in women: the Women’s Health Initiative. Menopause 24, 35–44 (2017).

    Article  Google Scholar 

  50. Hodson, L. et al. Lower resting and total energy expenditure in postmenopausal compared with premenopausal women matched for abdominal obesity. J. Nutr. Sci. 3, e3 (2014).

    Article  Google Scholar 

  51. Vincent-Rohfritsch, A., Le Ray, C., Anselem, O., Cabrol, D. & Goffinet, F. Pregnancy in women aged 43 years or older: maternal and perinatal risks. J. Gynecol. Obstet. Biol. Reprod. 41, 468–475 (2012).

    Article  CAS  Google Scholar 

  52. Yogev, Y. et al. Pregnancy outcome at extremely advanced maternal age. Am. J. Obstet. Gynecol. 203, 558.e1–558.e7 (2010).

    Article  Google Scholar 

  53. Sheen, J. J. et al. Maternal age and risk for adverse outcomes. Am. J. Obstet. Gynecol. 219, 390.e1–390.e15 (2018).

    Article  Google Scholar 

  54. Londero, A. P., Rossetti, E., Pittini, C., Cagnacci, A. & Driul, L. Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 19, 261 (2019).

    Article  Google Scholar 

  55. Mikwar, M., MacFarlane, A. J. & Marchetti, F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat. Res. 785, 108320 (2020).

    Article  CAS  Google Scholar 

  56. Babiker, F. A. et al. 17beta-estradiol antagonizes cardiomyocyte hypertrophy by autocrine/paracrine stimulation of a guanylyl cyclase A receptor-cyclic guanosine monophosphate-dependent protein kinase pathway. Circulation 109, 269–276 (2004).

    Article  CAS  Google Scholar 

  57. Lagranha, C. J., Deschamps, A., Aponte, A., Steenbergen, C. & Murphy, E. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ. Res. 106, 1681–1691 (2010).

    Article  CAS  Google Scholar 

  58. Iorga, A. et al. Rescue of pressure overload-induced heart failure by estrogen therapy. J. Am. Heart Assoc. 5, e002482 (2016).

    Article  Google Scholar 

  59. Pedram, A., Razandi, M., Narayanan, R. & Levin, E. R. Estrogen receptor beta signals to inhibition of cardiac fibrosis. Mol. Cell Endocrinol. 434, 57–68 (2016).

    Article  CAS  Google Scholar 

  60. Adams, M. R. et al. Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys. Lack of an effect of added progesterone. Arteriosclerosis 10, 1051–1057 (1990).

    Article  CAS  Google Scholar 

  61. Christ, J. P. et al. Estrogen deprivation and cardiovascular disease risk in primary ovarian insufficiency. Fertil. Steril. 109, 594–600.e1 (2018).

    Article  CAS  Google Scholar 

  62. Giordano, S. et al. Estrogen and cardiovascular disease: is timing everything? Am. J. Med. Sci. 350, 27–35 (2015).

    Article  Google Scholar 

  63. Spence, R. D. & Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol. 33, 105–115 (2012).

    Article  CAS  Google Scholar 

  64. Cooper, G. S. & Stroehla, B. C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2, 119–125 (2003).

    Article  Google Scholar 

  65. DECODE Study Group. Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care 26, 61–69 (2003).

    Article  Google Scholar 

  66. Qiao, Q. et al. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 26, 1770–1780 (2003).

    Article  Google Scholar 

  67. Gubbels Bupp, M. R. Sex, the aging immune system, and chronic disease. Cell Immunol. 294, 102–110 (2015).

    Article  CAS  Google Scholar 

  68. Vitale, C., Mendelsohn, M. E. & Rosano, G. M. C. Gender differences in the cardiovascular effect of sex hormones. Nat. Rev. Cardiol. 6, 532–542 (2009).

    Article  CAS  Google Scholar 

  69. Lerner, D. J. & Kannel, W. B. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am. Heart J. 111, 383–390 (1986).

    Article  CAS  Google Scholar 

  70. Pennell, L. M., Galligan, C. L. & Fish, E. N. Sex affects immunity. J. Autoimmun. 38, J282–J291 (2012).

    Article  CAS  Google Scholar 

  71. Ghisletti, S., Meda, C., Maggi, A. & Vegeto, E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell Biol. 25, 2957–2968 (2005).

    Article  CAS  Google Scholar 

  72. Rettew, J. A., Huet, Y. M. & Marriott, I. Estrogens augment cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrinology 150, 3877–3884 (2009).

    Article  CAS  Google Scholar 

  73. Rettew, J. A., McCall, S. H. T. & Marriott, I. GPR30/GPER-1 mediates rapid decreases in TLR4 expression on murine macrophages. Mol. Cell Endocrinol. 328, 87–92 (2010).

    Article  CAS  Google Scholar 

  74. Chidi-Ogbolu, N. & Baar, K. Effect of estrogen on musculoskeletal performance and injury risk. Front. Physiol. 9, 1834 (2018).

    Article  Google Scholar 

  75. Luo, T. & Kim, J. K. The role of estrogen and estrogen receptors on cardiomyocytes: an overview. Can. J. Cardiol. 32, 1017–1025 (2016).

    Article  Google Scholar 

  76. Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6, 7087 (2015).

    Article  CAS  Google Scholar 

  77. Collins, B. C. et al. Estrogen regulates the satellite cell compartment in females. Cell Rep. 28, 368–381.e6 (2019).

    Article  CAS  Google Scholar 

  78. Shultz, S. J., Sander, T. C., Kirk, S. E. & Perrin, D. H. Sex differences in knee joint laxity change across the female menstrual cycle. J. Sports Med. Phys. Fitness 45, 594–603 (2005).

    CAS  Google Scholar 

  79. Fischer, V. & Haffner-Luntzer, M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol. 123, 14–21 (2022).

    Article  Google Scholar 

  80. Krum, S. A. & Brown, M. Unraveling estrogen action in osteoporosis. Cell Cycle 7, 1348–1352 (2008).

    Article  CAS  Google Scholar 

  81. Mehta, J., Kling, J. M. & Manson, J. E. Risks, benefits, and treatment modalities of menopausal hormone therapy: current concepts. Front. Endocrinol. 12, 564781 (2021).

    Article  Google Scholar 

  82. Cauley, J. A. Estrogen and bone health in men and women. Steroids 99, 11–15 (2015).

    Article  CAS  Google Scholar 

  83. Borjesson, A. E., Lagerquist, M. K., Windahl, S. H. & Ohlsson, C. The role of estrogen receptor alpha in the regulation of bone and growth plate cartilage. Cell Mol. Life Sci. 70, 4023–4037 (2013).

    Article  CAS  Google Scholar 

  84. Krum, S. A. et al. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 27, 535–545 (2008).

    Article  CAS  Google Scholar 

  85. Hughes, D. E. et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat. Med. 2, 1132–1136 (1996).

    Article  CAS  Google Scholar 

  86. Almeida, M. et al. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J. Clin. Invest. 123, 394–404 (2013).

    Article  CAS  Google Scholar 

  87. Raisz, L. G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005).

    Article  CAS  Google Scholar 

  88. Streicher, C. et al. Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci. Rep. 7, 6460 (2017).

    Article  Google Scholar 

  89. Yousefzadeh, N., Kashfi, K., Jeddi, S. & Ghasemi, A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J. 19, 89–107 (2020).

    Google Scholar 

  90. Onal, M. et al. Receptor activator of nuclear factor kappaB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem. 287, 29851–29860 (2012).

    Article  CAS  Google Scholar 

  91. Mohammad, I. et al. Estrogen receptor alpha contributes to T cell-mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci. Signal. 11, eaap9415 (2018).

    Article  Google Scholar 

  92. Fuller, K., Murphy, C., Kirstein, B., Fox, S. W. & Chambers, T. J. TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143, 1108–1118 (2002).

    Article  CAS  Google Scholar 

  93. Weitzmann, M. N. & Ofotokun, I. Physiological and pathophysiological bone turnover — role of the immune system. Nat. Rev. Endocrinol. 12, 518–532 (2016).

    Article  CAS  Google Scholar 

  94. Vannucci, L. et al. Calcium intake in bone health: a focus on calcium-rich mineral waters. Nutrients 10, 1930 (2018).

    Article  Google Scholar 

  95. Christakos, S., Dhawan, P., Porta, A., Mady, L. J. & Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell Endocrinol. 347, 25–29 (2011).

    Article  CAS  Google Scholar 

  96. Gallagher, J. C. Vitamin D and aging. Endocrinol. Metab. Clin. North Am. 42, 319–332 (2013).

    Article  Google Scholar 

  97. Veldurthy, V. et al. Vitamin D, calcium homeostasis and aging. Bone Res. 4, 16041 (2016).

    Article  Google Scholar 

  98. Tella, S. H. & Gallagher, J. C. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol. 142, 155–170 (2014).

    Article  CAS  Google Scholar 

  99. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291, 1701–1712 (2004).

    Article  CAS  Google Scholar 

  100. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  Google Scholar 

  101. Levin, V. A., Jiang, X. & Kagan, R. Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 29, 1049–1055 (2018).

    Article  CAS  Google Scholar 

  102. Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280, 605–613 (1998).

    Article  CAS  Google Scholar 

  103. Heine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B. & Cooke, P. S. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA 97, 12729–12734 (2000).

    Article  CAS  Google Scholar 

  104. Murata, Y., Robertson, K. M., Jones, M. E. & Simpson, E. R. Effect of estrogen deficiency in the male: the ArKO mouse model. Mol. Cell Endocrinol. 193, 7–12 (2002).

    Article  CAS  Google Scholar 

  105. Grodstein, F. et al. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann. Intern. Med. 133, 933–941 (2000).

    Article  CAS  Google Scholar 

  106. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  CAS  Google Scholar 

  107. Rodriguez-Cuenca, S. et al. Sex steroid receptor expression profile in brown adipose tissue. Effects of hormonal status. Cell Physiol. Biochem. 20, 877–886 (2007).

    Article  CAS  Google Scholar 

  108. Chen, H. J., Meng, T., Gao, P. J. & Ruan, C. C. The role of brown adipose tissue dysfunction in the development of cardiovascular disease. Front. Endocrinol. 12, 652246 (2021).

    Article  Google Scholar 

  109. Planavila, A. et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun. 4, 2019 (2013).

    Article  CAS  Google Scholar 

  110. Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286, 12983–12990 (2011).

    Article  CAS  Google Scholar 

  111. Park, C. J. et al. Genetic rescue of nonclassical ERalpha signaling normalizes energy balance in obese Eralpha-null mutant mice. J. Clin. Invest. 121, 604–612 (2011).

    Article  CAS  Google Scholar 

  112. Casazza, K., Page, G. P. & Fernandez, J. R. The association between the rs2234693 and rs9340799 estrogen receptor alpha gene polymorphisms and risk factors for cardiovascular disease: a review. Biol. Res. Nurs. 12, 84–97 (2010).

    Article  CAS  Google Scholar 

  113. Schierbeck, L. L. et al. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ 345, e6409 (2012).

    Article  Google Scholar 

  114. Hodis, H. N. et al. Methods and baseline cardiovascular data from the Early versus Late Intervention Trial with Estradiol testing the menopausal hormone timing hypothesis. Menopause 22, 391–401 (2015).

    Article  Google Scholar 

  115. Harman, S. M. et al. Arterial imaging outcomes and cardiovascular risk factors in recently menopausal women: a randomized trial. Ann. Intern. Med. 161, 249–260 (2014).

    Article  Google Scholar 

  116. Phillips, L. S. & Langer, R. D. Postmenopausal hormone therapy: critical reappraisal and a unified hypothesis. Fertil. Steril. 83, 558–566 (2005).

    Article  CAS  Google Scholar 

  117. Cavero-Redondo, I., Peleteiro, B., Alvarez-Bueno, C., Rodriguez-Artalejo, F. & Martinez-Vizcaino, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: a systematic review and meta-analysis. BMJ Open 7, e015949 (2017).

    Article  Google Scholar 

  118. Zhong, G. C., Ye, M. X., Cheng, J. H., Zhao, Y. & Gong, J. P. HbA1c and risks of all-cause and cause-specific death in subjects without known diabetes: a dose-response meta-analysis of prospective cohort studies. Sci. Rep. 6, 24071 (2016).

    Article  CAS  Google Scholar 

  119. Iorga, A. et al. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 8, 33 (2017).

    Article  Google Scholar 

  120. Yang, X. P. & Reckelhoff, J. F. Estrogen, hormonal replacement therapy and cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 20, 133–138 (2011).

    Article  CAS  Google Scholar 

  121. Zárate, S., Stevnsner, T. & Gredilla, R. Role of estrogen and other sex hormones in brain aging. neuroprotection and DNA repair. Front. Aging Neurosci. 9, 430–430 (2017).

    Article  Google Scholar 

  122. Siddiqui, A. N. et al. Neuroprotective role of steroidal sex hormones: an overview. CNS Neurosci. Ther. 22, 342–350 (2016).

    Article  CAS  Google Scholar 

  123. Gambacciani, M. & Levancini, M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Prz Menopauzalny 13, 213–220 (2014).

    Google Scholar 

  124. Fait, T. Menopause hormone therapy: latest developments and clinical practice. Drugs Context 8, 212551–212551 (2019).

    Article  Google Scholar 

  125. Vinogradova, Y., Coupland, C. & Hippisley-Cox, J. Use of hormone replacement therapy and risk of breast cancer: nested case-control studies using the QResearch and CPRD databases. BMJ 371, m3873 (2020).

    Article  Google Scholar 

  126. Lobo, R. A. Hormone-replacement therapy: current thinking. Nat. Rev. Endocrinol. 13, 220–231 (2017).

    Article  CAS  Google Scholar 

  127. D’Alonzo, M., Bounous, V. E., Villa, M. & Biglia, N. Current evidence of the oncological benefit-risk profile of hormone replacement therapy. Medicina 55, 573 (2019).

    Article  Google Scholar 

  128. Boardman, H. M. P. et al. Hormone therapy for preventing cardiovascular disease in post‐menopausal women. Cochrane Database Syst. Rev. 2015, CD002229 (2015).

    Google Scholar 

  129. Lethaby, A., Hogervorst, E., Richards, M., Yesufu, A. & Yaffe, K. Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Syst. Rev. 2008, CD003122 (2018).

    Google Scholar 

  130. Clegg, A., Young, J., Iliffe, S., Rikkert, M. O. & Rockwood, K. Frailty in elderly people. Lancet 381, 752–762 (2013).

    Article  Google Scholar 

  131. Jaul, E. & Barron, J. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front. Public Health 5, 335–335 (2017).

    Article  Google Scholar 

  132. Cheng, X. et al. Population ageing and mortality during 1990–2017: a global decomposition analysis. PLoS Med. 17, e1003138 (2020).

    Article  Google Scholar 

  133. Olshansky, S. J. From lifespan to healthspan. JAMA 320, 1323–1324 (2018).

    Article  Google Scholar 

  134. Crimmins, E. M. Lifespan and healthspan: past, present, and promise. Gerontologist 55, 901–911 (2015).

    Article  Google Scholar 

  135. Argyle, C. E., Harper, J. C. & Davies, M. C. Oocyte cryopreservation: where are we now? Hum. Reprod. Update 22, 440–449 (2016).

    Article  CAS  Google Scholar 

  136. Iussig, B. et al. A brief history of oocyte cryopreservation: arguments and facts. Acta Obstet. Gynecol. Scand. 98, 550–558 (2019).

    Article  Google Scholar 

  137. Bhattacharya, S., Maheshwari, A. & Mollison, J. Factors associated with failed treatment: an analysis of 121,744 women embarking on their first IVF cycles. PLoS One 8, e82249 (2013).

    Article  Google Scholar 

  138. Centers for Disease Control and Prevention. 2019 Assisted Reproductive Technology Fertility Clinic and National Summary Report (US Dept of Health and Human Services, 2021).

  139. Llarena, N. & Hine, C. Reproductive longevity and aging: geroscience approaches to maintain long-term ovarian fitness. J. Gerontol. A Biol. Sci. Med. Sci. 76, 1551–1560 (2021).

    Article  CAS  Google Scholar 

  140. Finch, C. E. The menopause and aging, a comparative perspective. J. Steroid Biochem. Mol. Biol. 142, 132–141 (2014).

    Article  CAS  Google Scholar 

  141. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  Google Scholar 

  142. Liochev, S. I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60, 1–4 (2013).

    Article  CAS  Google Scholar 

  143. Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59–63 (1996).

    Article  CAS  Google Scholar 

  144. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  Google Scholar 

  145. Sasaki, H. et al. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front. Endocrinol. 10, 811–811 (2019).

    Article  Google Scholar 

  146. Becatti, M. et al. A biochemical approach to detect oxidative stress in infertile women undergoing assisted reproductive technology procedures. Int. J. Mol. Sci. 19, 592 (2018).

    Article  Google Scholar 

  147. Wiener-Megnazi, Z. et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil. Steril. 82, 1171–1176 (2004).

    Article  CAS  Google Scholar 

  148. Appasamy, M. et al. Evaluation of the relationship between follicular fluid oxidative stress, ovarian hormones, and response to gonadotropin stimulation. Fertil. Steril. 89, 912–921 (2008).

    Article  CAS  Google Scholar 

  149. Oyawoye, O. et al. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum. Reprod. 18, 2270–2274 (2003).

    Article  CAS  Google Scholar 

  150. Das, S. et al. Reactive oxygen species level in follicular fluid — embryo quality marker in IVF? Hum. Reprod. 21, 2403–2407 (2006).

    Article  CAS  Google Scholar 

  151. Terao, H. et al. Role of oxidative stress in follicular fluid on embryos of patients undergoing assisted reproductive technology treatment. J. Obstet. Gynaecol. Res. 45, 1884–1891 (2019).

    Article  CAS  Google Scholar 

  152. Liu, L., Trimarchi, J. R., Navarro, P., Blasco, M. A. & Keefe, D. L. Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J. Biol. Chem. 278, 31998–32004 (2003).

    Article  CAS  Google Scholar 

  153. Navarro, P. A., Liu, L., Ferriani, R. A. & Keefe, D. L. Arsenite induces aberrations in meiosis that can be prevented by coadministration of N-acetylcysteine in mice. Fertil. Steril. 85(Suppl 1), 1187–1194 (2006).

    Article  CAS  Google Scholar 

  154. Huang, J., Okuka, M., McLean, M., Keefe, D. L. & Liu, L. Telomere susceptibility to cigarette smoke-induced oxidative damage and chromosomal instability of mouse embryos in vitro. Free Radic. Biol. Med. 48, 1663–1676 (2010).

    Article  CAS  Google Scholar 

  155. Liu, J. et al. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum. Reprod. 27, 1411–1420 (2012).

    Article  CAS  Google Scholar 

  156. Chen, Z. G. et al. Effects of plant polyphenols on ovarian follicular reserve in aging rats. Biochem. Cell Biol. 88, 737–745 (2010).

    Article  CAS  Google Scholar 

  157. Tarín, J. J., Pérez-Albalá, S. & Cano, A. Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol. Reprod. Dev. 61, 385–397 (2002).

    Article  Google Scholar 

  158. Tarı́n, J. J., Pérez-Albalá, S., Pertusa, J. F. & Cano, A. Oral administration of pharmacological doses of Vitamins C and E reduces reproductive fitness and impairs the ovarian and uterine functions of female mice. Theriogenology 57, 1539–1550 (2002).

    Article  Google Scholar 

  159. Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G. & Gluud, C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012, CD007176 (2012).

    Google Scholar 

  160. Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 106, 8665–8670 (2009).

    Article  CAS  Google Scholar 

  161. Evans, J. R. & Lawrenson, J. G. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst. Rev. 7, CD000254 (2017).

    Google Scholar 

  162. Mathew, M. C., Ervin, A. M., Tao, J. & Davis, R. M. Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst. Rev. 6, CD004567 (2012).

    Google Scholar 

  163. Rutjes, A. W. S. et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst. Rev. 12, CD011906 (2018).

    Google Scholar 

  164. Al-Khudairy, L. et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 3, CD011114 (2017).

    Google Scholar 

  165. Agarwal, A., Durairajanayagam, D. & du Plessis, S. S. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12, 112–112 (2014).

    Article  Google Scholar 

  166. Tesarik, J. Towards personalized antioxidant use in female infertility: need for more molecular and clinical studies. Biomedicines 9, 1933 (2021).

    Article  CAS  Google Scholar 

  167. Ochiai, A. et al. Influence of resveratrol supplementation on IVF-embryo transfer cycle outcomes. Reprod. Biomed. Online 39, 205–210 (2019).

    Article  CAS  Google Scholar 

  168. Zhang, L. X. et al. Resveratrol (RV): a pharmacological review and call for further research. Biomed. Pharmacother. 143, 112164 (2021).

    Article  CAS  Google Scholar 

  169. Heilbronn, L. K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 78, 361–369 (2003).

    Article  CAS  Google Scholar 

  170. Féry, F., Plat, L. & Balasse, E. O. Effects of metformin on the pathways of glucose utilization after oral glucose in non-insulin-dependent diabetes mellitus patients. Metabolism 46, 227–233 (1997).

    Article  Google Scholar 

  171. Hundal, R. S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069 (2000).

    Article  CAS  Google Scholar 

  172. Onken, B. & Driscoll, M. Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758 (2010).

    Article  Google Scholar 

  173. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  Google Scholar 

  174. Campbell, J. M., Bellman, S. M., Stephenson, M. D. & Lisy, K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res. Rev. 40, 31–44 (2017).

    Article  CAS  Google Scholar 

  175. Isola, J. V. V. et al. Mild calorie restriction, but not 17α-estradiol, extends ovarian reserve and fertility in female mice. Exp. Gerontol. 159, 111669 (2022).

    Article  CAS  Google Scholar 

  176. Selesniemi, K., Lee, H.-J. & Tilly, J. L. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7, 622–629 (2008).

    Article  CAS  Google Scholar 

  177. Qin, X. et al. Metformin prevents murine ovarian aging. Aging 11, 3785–3794 (2019).

    Article  CAS  Google Scholar 

  178. Xu, S. et al. Glucose activates the primordial follicle through the AMPK/mTOR signaling pathway. Clin. Transl. Med. 10, e122 (2020).

    Article  Google Scholar 

  179. Oner, G., Ozcelik, B., Ozgun, M. T. & Ozturk, F. The effects of metformin and letrozole on endometrium and ovary in a rat model. Gynecol. Endocrinol. 27, 1084–1086 (2011).

    Article  CAS  Google Scholar 

  180. Barilovits, S. J. et al. Characterization of a mechanism to inhibit ovarian follicle activation. Fertil. Steril. 101, 1450–1457 (2014).

    Article  CAS  Google Scholar 

  181. Lane, M. A., Ingram, D. K. & Roth, G. S. 2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction. J. Anti Aging Med. 1, 327–337 (1998).

    Article  CAS  Google Scholar 

  182. Minor, R. K. et al. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol. Appl. Pharmacol. 243, 332–339 (2010).

    Article  CAS  Google Scholar 

  183. Chiang, J. L. et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res. Rev. 63, 101168 (2020).

    Article  CAS  Google Scholar 

  184. Wang, T., Zhang, M., Jiang, Z., Seli, E. Mitochondrial dysfunction and ovarian aging. Am. J. Reprod. Immunol. 77, bqaa001 (2017).

  185. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  Google Scholar 

  186. Yang, Q. et al. Increasing ovarian NAD(+) levels improve mitochondrial functions and reverse ovarian aging. Free Radic. Biol. Med. 156, 1–10 (2020).

    Article  CAS  Google Scholar 

  187. Bertoldo, M. J. et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 30, 1670–1681.e7 (2020).

    Article  CAS  Google Scholar 

  188. Yang, L. et al. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD(+) redox. Aging Cell 19, e13206 (2020).

    Article  CAS  Google Scholar 

  189. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    Article  CAS  Google Scholar 

  190. Jia, K. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897–3906 (2004).

    Article  CAS  Google Scholar 

  191. Vellai, T. et al. Genetics influence of TOR kinase on lifespan in C. elegans. Nature 426, 620–620 (2003).

    Article  CAS  Google Scholar 

  192. Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    Article  CAS  Google Scholar 

  193. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  Google Scholar 

  194. Wu, J. J. et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 4, 913–920 (2013).

    Article  CAS  Google Scholar 

  195. Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).

    Article  CAS  Google Scholar 

  196. Neff, F. et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272–3291 (2013).

    Article  CAS  Google Scholar 

  197. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    Article  Google Scholar 

  198. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191–201 (2011).

    Article  Google Scholar 

  199. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  Google Scholar 

  200. Guo, Z. & Yu, Q. Role of mTOR signaling in female reproduction. Front. Endocrinol. 10, 692–692 (2019).

    Article  Google Scholar 

  201. Adhikari, D. et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet. 19, 397–410 (2010).

    Article  CAS  Google Scholar 

  202. Adhikari, D. et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol. Hum. Reprod. 15, 765–770 (2009).

    Article  CAS  Google Scholar 

  203. Zhang, H. et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr. Biol. 24, 2501–2508 (2014).

    Article  CAS  Google Scholar 

  204. Lu, X. et al. Stimulation of ovarian follicle growth after AMPK inhibition. Reproduction 153, 683–694 (2017).

    Article  CAS  Google Scholar 

  205. Tanaka, Y. et al. Deletion of tuberous sclerosis 1 in somatic cells of the murine reproductive tract causes female infertility. Endocrinology 153, 404–416 (2012).

    Article  CAS  Google Scholar 

  206. Choi, J., Jo, M., Lee, E. & Choi, D. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia. Reproduction 147, 73–80 (2014).

    Article  CAS  Google Scholar 

  207. Zhang, X. M. et al. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene 523, 82–87 (2013).

    Article  CAS  Google Scholar 

  208. Tong, Y. et al. Rapamycin-sensitive mTORC1 signaling is involved in physiological primordial follicle activation in mouse ovary. Mol. Reprod. Dev. 80, 1018–1034 (2013).

    Article  CAS  Google Scholar 

  209. Adhikari, D. et al. Pharmacological inhibition of mTORC1 prevents over-activation of the primordial follicle pool in response to elevated PI3K signaling. PLoS One 8, e53810 (2013).

    Article  CAS  Google Scholar 

  210. Luo, L. L., Xu, J. J. & Fu, Y. C. Rapamycin prolongs female reproductive lifespan. Cell Cycle 12, 3353–3354 (2013).

    Article  CAS  Google Scholar 

  211. Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 5, e16351 (2016).

    Article  Google Scholar 

  212. Wang, Y. et al. The essential role of PRAK in tumor metastasis and its therapeutic potential. Nat. Commun. 12, 1736 (2021).

    Article  CAS  Google Scholar 

  213. Woo, Y. et al. Rapamycin promotes ROS-mediated cell death via functional inhibition of xCT expression in melanoma under gamma-irradiation. Front. Oncol. 11, 665420 (2021).

    Article  Google Scholar 

  214. Orentreich, N., Brind, J. L., Rizer, R. L. & Vogelman, J. H. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J. Clin. Endocrinol. Metab. 59, 551–555 (1984).

    Article  CAS  Google Scholar 

  215. Zhang, J. et al. Dehydroepiandrosterone improves the ovarian reserve of women with diminished ovarian reserve and is a potential regulator of the immune response in the ovaries. BioScience Trends 9, 350–359 (2015).

    Article  CAS  Google Scholar 

  216. Gleicher, N., Weghofer, A. & Barad, D. H. Improvement in diminished ovarian reserve after dehydroepiandrosterone supplementation. Reprod. Biomed. Online 21, 360–365 (2010).

    Article  CAS  Google Scholar 

  217. Narkwichean, A. et al. Effects of dehydroepiandrosterone on in vivo ovine follicular development. Hum. Reprod. 29, 146–154 (2013).

    Article  Google Scholar 

  218. Meredith, S., Jackson, K., Dudenhoeffer, G., Graham, L. & Epple, J. Long-term supplementation with melatonin delays reproductive senescence in rats, without an effect on number of primordial follicles. Exp. Gerontol. 35, 343–352 (2000).

    Article  CAS  Google Scholar 

  219. Fernández, B. E., Díaz, E., Fernández, C., Núñez, P. & Díaz, B. Ovarian aging: melatonin regulation of the cytometric and endocrine evolutive pattern. Curr. Aging Sci. 6, 1–7 (2013).

    Article  Google Scholar 

  220. Tamura, H. et al. Long-term melatonin treatment delays ovarian aging. J. Pineal. Res. 62, (2017).

  221. Song, C. et al. Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci. Rep. 6, 35165 (2016).

    Article  CAS  Google Scholar 

  222. Zhang, L. et al. Melatonin regulates the activities of ovary and delays the fertility decline in female animals via MT1/AMPK pathway. J. Pineal. Res. 66, e12550 (2019).

    Article  Google Scholar 

  223. Yang, C. et al. Melatonin delays ovarian aging in mice by slowing down the exhaustion of ovarian reserve. Commun. Biol. 4, 534 (2021).

    Article  CAS  Google Scholar 

  224. Bellipanni, G., Bianchi, P., Pierpaoli, W., Bulian, D. & Ilyia, E. Effects of melatonin in perimenopausal and menopausal women: a randomized and placebo controlled study. Exp. Gerontol. 36, 297–310 (2001).

    Article  CAS  Google Scholar 

  225. Takasaki, A., Nakamura, Y., Tamura, H., Shimamura, K. & Morioka, H. Melatonin as a new drug for improving oocyte quality. Reprod. Med. Biol. 2, 139–144 (2003).

    Article  CAS  Google Scholar 

  226. Tamura, H. et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal. Res. 44, 280–287 (2008).

    Article  CAS  Google Scholar 

  227. Batioglu, A. S., Sahin, U., Gurlek, B., Ozturk, N. & Unsal, E. The efficacy of melatonin administration on oocyte quality. Gynecol. Endocrinol. 28, 91–93 (2012).

    Article  Google Scholar 

  228. Fernando, S. et al. Melatonin in assisted reproductive technology: a pilot double-blind randomized placebo-controlled clinical trial. Front. Endocrinol. 9, 545 (2018).

    Article  Google Scholar 

  229. Espino, J. et al. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants 8, 338 (2019).

    Article  CAS  Google Scholar 

  230. George, K. & Kamath, M. S. Fertility and age. J. Hum. Reprod. Sci. 3, 121–123 (2010).

    Article  Google Scholar 

  231. Smith, K. R. et al. Familial aggregation of survival and late female reproduction. J. Gerontol. A Biol. Sci. Med. Sci. 64, 740–744 (2009).

    Article  Google Scholar 

  232. Abdollahifar, M. A. et al. Vitamin C restores ovarian follicular reservation in a mouse model of aging. Anat. Cell Biol. 52, 196–203 (2019).

    Article  Google Scholar 

  233. Zhuang, X. L. et al. Effects of genistein on ovarian follicular development and ovarian life span in rats. Fitoterapia 81, 998–1002 (2010).

    Article  CAS  Google Scholar 

  234. Appt, S. E. et al. The effect of diet and cardiovascular risk on ovarian aging in cynomolgus monkeys (Macaca fascicularis). Menopause 17, 741–748 (2010).

    Article  Google Scholar 

  235. Liu, M. et al. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 28, 707–717 (2013).

    Article  CAS  Google Scholar 

  236. Ben-Meir, A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14, 887–895 (2015).

    Article  CAS  Google Scholar 

  237. Timoteo-Ferreira, F. et al. Apocynin dietary supplementation delays mouse ovarian ageing. Oxid. Med. Cell Longev. 2019, 5316984 (2019).

    Article  CAS  Google Scholar 

  238. Silva, E. et al. Antioxidant supplementation modulates age-related placental bed morphology and reproductive outcome in mice. Biol. Reprod. 93, 56 (2015).

    Article  Google Scholar 

  239. Xian, Y. et al. Antioxidants retard the ageing of mouse oocytes. Mol. Med. Rep. 18, 1981–1986 (2018).

    CAS  Google Scholar 

  240. Akino, N. et al. Activation of Nrf2/Keap1 pathway by oral Dimethylfumarate administration alleviates oxidative stress and age-associated infertility might be delayed in the mouse ovary. Reprod. Biol. Endocrinol. 17, 23 (2019).

    Article  Google Scholar 

  241. Wei, M. et al. Ovarian failure-resistant effects of catalpol in aged female rats. Biol. Pharm. Bull. 37, 1444–1449 (2014).

    Article  CAS  Google Scholar 

  242. Jinno, M. et al. Low-dose metformin improves pregnancy rate in IVF repeaters without polycystic ovary syndrome: its indication and mechanism. Fertil. Steril. 94, S29–S29 (2010).

    Article  Google Scholar 

  243. Zhang, Z. et al. alpha-ketoglutarate delays age-related fertility decline in mammals. Aging Cell 20, e13291 (2021).

    Article  CAS  Google Scholar 

  244. Yu, J., Yaba, A., Kasiman, C., Thomson, T. & Johnson, J. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 6, e21415 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.D. is funded for her PhD studies by National University of Singapore. The authors acknowledge the generous contribution of the Bia-Echo Foundation to Yong Loo Lin School of Medicine, National University of Singapore in the set-up of NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality to change the science and narrative of female reproductive longevity.

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and B.K.K. conceptualized and led the review. D.B.L.T. and L.D. performed the literature review, summarized data, constructed the figures and wrote the first version of the manuscript. B.K.K. and Z.H. revised and critically reviewed the subsequent draft revisions. All authors read, edited, and approved the final article.

Corresponding authors

Correspondence to Brian Keith Kennedy or Zhongwei Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Teh, D.B.L., Kennedy, B.K. et al. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res 33, 11–29 (2023). https://doi.org/10.1038/s41422-022-00718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-022-00718-7

Search

Quick links