Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PPA1 promotes adipogenesis by regulating the stability of C/EBPs

Abstract

Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinβ and δ (C/EBPβ and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PPA1 ablation results in severe lipodystrophy in vivo.
Fig. 2: Adipose PPA1 ablation in mice resulted in liver steatosis and insulin resistance.
Fig. 3: PPA1AKO mice are resistant to HFD-induced obesity but developed more severe metabolic disorders.
Fig. 4: PPA1 is required for adipocyte differentiation in vitro.
Fig. 5: PPA1 may promote adipocyte differentiation independent of its enzymatic activity.
Fig. 6: Loss of PPA1 inhibited adipogenesis through increasing C/EBPβ and C/EBPδ proteasome-dependent degradation.

Similar content being viewed by others

Data availability

The raw RNA-sequencing data reported in this paper have been deposited in the Figshare database (https://doi.org/10.6084/m9.figshare.25679760). All datasets analyzed in the study are available from the corresponding authors on reasonable request. Raw western blots are available in the Supplemental file.

References

  1. Hirsch J, Han PW. Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J Lipid Res. 1969;10:77–82.

    Article  CAS  PubMed  Google Scholar 

  2. Kloting N, Bluher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014;15:277–87.

    Article  PubMed  Google Scholar 

  3. Sun K, Tordjman J, Clement K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18:470–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar J, et al. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg Obes Relat Dis. 2011;7:60–7.

    Article  PubMed  Google Scholar 

  5. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299:E506–15.

    Article  PubMed  Google Scholar 

  6. Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest. 2019;129:4022–31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20:242–58.

    Article  CAS  PubMed  Google Scholar 

  8. Quinn K, Chauhan S, Purcell SM. Lipodystrophies. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.

  9. Mann JP, Savage DB. What lipodystrophies teach us about the metabolic syndrome. J Clin Invest. 2019;129:4009–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zammouri J, Vatier C, Capel E, Auclair M, Storey-London C, Bismuth E, et al. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front Endocrinol (Lausanne). 2021;12:803189.

    Article  PubMed  Google Scholar 

  11. Mota de Sa P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr Physiol. 2017;7:635–74.

    Article  PubMed  Google Scholar 

  12. White U, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E. Adipose depot-specific effects of 16 weeks of pioglitazone on in vivo adipogenesis in women with obesity: a randomised controlled trial. Diabetologia. 2021;64:159–67.

    Article  CAS  PubMed  Google Scholar 

  13. McLaughlin TM, Liu T, Yee G, Abbasi F, Lamendola C, Reaven GM, et al. Pioglitazone increases the proportion of small cells in human abdominal subcutaneous adipose tissue. Obes (Silver Spring). 2010;18:926–31.

    Article  CAS  Google Scholar 

  14. Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol. 2012;4:a008417.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee JE, Ge K. Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis. Cell Biosci. 2014;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991;5:1538–52.

    Article  CAS  PubMed  Google Scholar 

  17. Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 1995;9:168–81.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997;16:7432–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo L, Huang JX, Liu Y, Li X, Zhou SR, Qian SW, et al. Transactivation of Atg4b by C/EBPbeta promotes autophagy to facilitate adipogenesis. Mol Cell Biol. 2013;33:3180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci USA. 2003;100:44–9.

    Article  CAS  PubMed  Google Scholar 

  21. Tezuka Y, Okada M, Tada Y, Yamauchi J, Nishigori H, Sanbe A. Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK dephosphorylation. PLoS One. 2013;8:e61649.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Polewski MD, Johnson KA, Foster M, Millan JL, Terkeltaub R. Inorganic pyrophosphatase induces type I collagen in osteoblasts. Bone. 2010;46:81–90.

    Article  CAS  PubMed  Google Scholar 

  23. Luo D, Liu D, Shi W, Jiang H, Liu W, Zhang X, et al. PPA1 promotes NSCLC progression via a JNK- and TP53-dependent manner. Oncogenesis. 2019;8:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mishra DR, Chaudhary S, Krishna BM, Mishra SK. Identification of critical elements for regulation of inorganic pyrophosphatase (PPA1) in MCF7 Breast Cancer Cells. PLoS One. 2015;10:e0124864.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T, et al. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res. 2004;10:2007–14.

    Article  CAS  PubMed  Google Scholar 

  26. Chen G, Gharib TG, Huang CC, Thomas DG, Shedden KA, Taylor JM, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res. 2002;8:2298–305.

    CAS  PubMed  Google Scholar 

  27. Yin Y, Wu Y, Zhang X, Zhu Y, Sun Y, Yu J, et al. PPA1 regulates systemic insulin sensitivity by maintaining adipocyte mitochondria function as a novel PPARgamma target gene. Diabetes. 2021;70:1278–91.

    Article  CAS  PubMed  Google Scholar 

  28. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23:770–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavalcanti-de-Albuquerque JP, Bober J, Zimmer MR, Dietrich MO. Regulation of substrate utilization and adiposity by Agrp neurons. Nat Commun. 2019;10:311.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chhabra KH, Adams JM, Fagel B, Lam DD, Qi N, Rubinstein M, et al. Hypothalamic POMC deficiency improves glucose tolerance despite insulin resistance by increasing glycosuria. Diabetes. 2016;65:660–72.

    Article  CAS  PubMed  Google Scholar 

  31. Lahti R, Kolakowski LF Jr., Heinonen J, Vihinen M, Pohjanoksa K, Cooperman BS. Conservation of functional residues between yeast and E. coli inorganic pyrophosphatases. Biochim Biophys Acta. 1990;1038:338–45.

    Article  CAS  PubMed  Google Scholar 

  32. Vihinen M, Lundin M, Baltscheffsky H. Computer modeling of two inorganic pyrophosphatases. Biochem Biophys Res Commun. 1992;186:122–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gustafson B, Hammarstedt A, Hedjazifar S, Smith U. Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes. 2013;62:2997–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA. 2010;107:18226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12:722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hattori T, Ohoka N, Inoue Y, Hayashi H, Onozaki K. C/EBP family transcription factors are degraded by the proteasome but stabilized by forming dimer. Oncogene. 2003;22:1273–80.

    Article  CAS  PubMed  Google Scholar 

  38. Li H, Xiao N, Li Z, Wang Q. Expression of Inorganic Pyrophosphatase (PPA1) Correlates with Poor Prognosis of Epithelial Ovarian Cancer. Tohoku J Exp Med. 2017;241:165–73.

    Article  CAS  PubMed  Google Scholar 

  39. Niu H, Zhou W, Xu Y, Yin Z, Shen W, Ye Z, et al. Silencing PPA1 inhibits human epithelial ovarian cancer metastasis by suppressing the Wnt/beta-catenin signaling pathway. Oncotarget. 2017;8:76266–78.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Siersbaek R, Nielsen R, Mandrup S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab. 2012;23:56–64.

    Article  CAS  PubMed  Google Scholar 

  41. Lim GE, Albrecht T, Piske M, Sarai K, Lee JTC, Ramshaw HS, et al. 14-3-3zeta coordinates adipogenesis of visceral fat. Nat Commun. 2015;6:7671.

    Article  CAS  PubMed  Google Scholar 

  42. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA. 2003;100:850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Audano M, Pedretti S, Caruso D, Crestani M, De Fabiani E, Mitro N. Regulatory mechanisms of the early phase of white adipocyte differentiation: an overview. Cell Mol Life Sci. 2022;79:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36.

    Article  CAS  PubMed  Google Scholar 

  45. Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) beta. J Biol Chem. 2015;290:755–61.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Zhang YD, Guo L, Huang HY, Zhu H, Huang JX, et al. Protein inhibitor of activated STAT 1 (PIAS1) is identified as the SUMO E3 ligase of CCAAT/enhancer-binding protein beta (C/EBPbeta) during adipogenesis. Mol Cell Biol. 2013;33:4606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung SS, Ahn BY, Kim M, Choi HH, Park HS, Kang S, et al. Control of adipogenesis by the SUMO-specific protease SENP2. Mol Cell Biol. 2010;30:2135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lechner S, Mitterberger MC, Mattesich M, Zwerschke W. Role of C/EBPbeta-LAP and C/EBPbeta-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes. Differentiation. 2013;85:20–31.

    Article  CAS  PubMed  Google Scholar 

  50. Wang P, Zhou Y, Mei Q, Zhao J, Huang L, Fu Q. PPA1 regulates tumor malignant potential and clinical outcome of colon adenocarcinoma through JNK pathways. Oncotarget. 2017;8:58611–24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tchoukalova YD, Harteneck DA, Karwoski RA, Tarara J, Jensen MD. A quick, reliable, and automated method for fat cell sizing. J Lipid Res. 2003;44:1795–801.

    Article  CAS  PubMed  Google Scholar 

  52. Bahrami-Nejad Z, Zhao ML, Tholen S, Hunerdosse D, Tkach KE, van Schie S, et al. A transcriptional circuit filters oscillating circadian hormonal inputs to regulate fat cell differentiation. Cell Metab. 2018;27:854–68.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shamsi F, Tseng YH. Protocols for generation of immortalized human brown and white preadipocyte cell lines. Methods Mol Biol. 2017;1566:77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heinonen JK, Lahti RJ. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem. 1981;113:313–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the lab members for insightful discussion during this study.

Funding

This work was supported by National Key R&D Program of China (2022YFA0806102), National Natural Science Foundation of China (82270874, 82370855, 81970709).

Author information

Authors and Affiliations

Authors

Contributions

YY and HYL conceived the project and wrote the manuscript. YYW and YS designed and performed most experiments. YQS performed in vivo studies and analyzed the data. YH and JTW performed in vitro experiments. XH contributed to the discussion and critically reviewed and edited the manuscript. All authors revised and approved the final version of the manuscript. XH is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Haiyan Lin, Ye Yin or Xiao Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All animal experiments were approved and complied with the guidelines of the Institutional Animal Care and Use Committee of the Nanjing Medical University, China (Permit Number: IACUC-NJMU 14030178). Human specimens were supplied by the Southeast University Affiliated Zhongda Hospital and written informed consent was obtained from the patients (Permit number: 2020ZDSYLL144-P01 by the Independent Ethics Committee of Southeast University Affiliated Zhongda Hospital).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Sun, Y., Song, Y. et al. PPA1 promotes adipogenesis by regulating the stability of C/EBPs. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01309-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01309-2

Search

Quick links