Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLC15A3 expression was significantly increased in pulmonary fibrosis.
Fig. 2: SLC15A3 deficiency protects mice from BLM-induced pulmonary fibrosis.
Fig. 3: Deficiency of SLC15A3 alters immune microenvironment of lung.
Fig. 4: SLC15A3 influences the progression of pulmonary fibrosis by regulating oxidative stress response.
Fig. 5: SLC15A3 regulates oxidative stress response of macrophages through p62-NRF2 pathway.
Fig. 6: Overexpression of SLC15A3 reduces the expression of p62.
Fig. 7: Interaction of SLC15A3 and p62.
Fig. 8: A proposed schematic diagram for the role of SLC15A3 in pulmonary fibrosis by modulating the redox microenvironment in macrophages.

Similar content being viewed by others

Data availability

The data analyzed during this study are included in this article and the supplemental data files.

References

  1. King TE, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378:1949–61.

    Article  PubMed  Google Scholar 

  2. Richeldi L, Rubin AS, Avdeev S, Udwadia ZF, Xu ZJ. Idiopathic pulmonary fibrosis in BRIC countries: the cases of Brazil, Russia, India, and China. BMC Med. 2015;13:237.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pardo A, Selman M. The interplay of the genetic architecture, aging, and environmental factors in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;64:163–72.

    Article  CAS  PubMed  Google Scholar 

  4. Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharm. 2022;12:797292.

    Article  Google Scholar 

  5. Spagnolo P, Tzouvelekis A, Bonella F. The management of patients with idiopathic pulmonary fibrosis. Front Med. 2018;5:148.

    Article  Google Scholar 

  6. Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A, et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2021;57:2002559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byrne AJ, Maher TM, Lloyd CM. Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med. 2016;22:303–16.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res. 2018;19:170.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology 2020;160:126–38.

    Article  CAS  PubMed  Google Scholar 

  10. Divangahi M, King IL, Pernet E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol. 2015;36:307–14.

    Article  CAS  PubMed  Google Scholar 

  11. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14:81–93.

    Article  CAS  PubMed  Google Scholar 

  12. Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003;167:1600–19.

    Article  PubMed  Google Scholar 

  13. Cui Y, Robertson J, Maharaj S, Waldhauser L, Niu J, Wang J, et al. Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol. 2011;43:1122–33.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Wu Z, Liu Y, Zhan Z, Yang L, Wang C, et al. ROS-responsive liposomes as an inhaled drug delivery nanoplatform for idiopathic pulmonary fibrosis treatment via Nrf2 signaling. J Nanobiotechnol. 2022;20:213.

    Article  Google Scholar 

  15. Kuwano K, Hagimoto N, Maeyama T, Fujita M, Yoshimi M, Inoshima I, et al. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias. Lab Invest. 2002;82:1695–706.

    Article  CAS  PubMed  Google Scholar 

  16. Ji WJ, Ma YQ, Zhou X, Zhang YD, Lu RY, Sun HY, et al. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J Immunol Methods. 2014;403:7–16.

    Article  CAS  PubMed  Google Scholar 

  17. Schupp JC, Binder H, Jäger B, Cillis G, Zissel G, Müller-Quernheim J, et al. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis. PLoS ONE. 2015;10:e0116775.

    Article  PubMed  PubMed Central  Google Scholar 

  18. He C, Ryan AJ, Murthy S, Carter AB. Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages. J Biol Chem. 2013;288:20745–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis. Front Pharm. 2022;12:794997.

    Article  Google Scholar 

  20. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Asp Med. 2011;32:234–46.

    Article  CAS  Google Scholar 

  21. Zhu H, Jia Z, Zhang L, Yamamoto M, Misra HP, Trush MA, et al. Antioxidants and phase 2 enzymes in macrophages: regulation by Nrf2 signaling and protection against oxidative and electrophilic stress. Exp Biol Med. 2008;233:463–74.

    Article  CAS  Google Scholar 

  22. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sánchez-Martín P, Sou YS, Kageyama S, Koike M, Waguri S, Komatsu M. NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep. 2020;21:e48902.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Asp Med. 2013;34:323–36.

    Article  CAS  Google Scholar 

  26. Viennois E, Pujada A, Zen J, Merlin D. Function, regulation, and pathophysiological relevance of the POT superfamily, specifically PepT1 in inflammatory Bowel disease. Compr Physiol. 2018;8:731–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun D, Wang Y, Tan F, Fang D, Hu Y, Smith DE, et al. Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human. Mol Pharm. 2013;10:1409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Li P, Song F, Yang X, Weng Y, Ma Z, et al. Substrate transport properties of the human peptide/histidine transporter PHT2 in transfected MDCK cells. J Pharm Sci. 2019;108:3416–24.

    Article  CAS  PubMed  Google Scholar 

  29. Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M. Cloning of a lymphatic peptide/histidine transporter. Biochem J. 2001;356:53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Sun D, Song F, Hu Y, Smith DE, Jiang H. Expression and regulation of the proton-coupled oligopeptide transporter PhT2 by LPS in macrophages and mouse spleen. Mol Pharm. 2014;11:1880–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song F, Yi Y, Li C, Hu Y, Wang J, Smith DE, et al. Regulation and biological role of the peptide/histidine transporter SLC15A3 in Toll-like receptor-mediated inflammatory responses in macrophage. Cell Death Dis. 2018;9:770.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Hu Y, Li P, Weng Y, Kamada N, Jiang H, et al. Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice. Biochem Pharm. 2018;148:163–73.

    Article  CAS  PubMed  Google Scholar 

  33. He L, Wang B, Li Y, Zhu L, Li P, Zou F, et al. The solute carrier transporter SLC15A3 participates in antiviral innate immune responses against herpes simplex virus-1. J Immunol Res. 2018;2018:1–10.

    CAS  Google Scholar 

  34. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6:eaba1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meltzer EB, Barry WT, D’Amico TA, Davis RD, Lin SS, Onaitis MW, et al. Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle. BMC Med Genom. 2011;4:70.

    Article  CAS  Google Scholar 

  36. Yang IV, Luna LG, Cotter J, Talbert J, Leach SM, Kidd R, et al. The peripheral blood transcriptome identifies the presence and extent of disease in idiopathic pulmonary fibrosis. PLoS ONE 2012;7:e37708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee J, Arisi I, Puxeddu E, Mramba LK, Amicosante M, Swaisgood CM, et al. Bronchoalveolar lavage (BAL) cells in idiopathic pulmonary fibrosis express a complex pro-inflammatory, pro-repair, angiogenic activation pattern, likely associated with macrophage iron accumulation. PLoS ONE. 2018;13:e0194803.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020;36:101679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Asp Med. 2019;65:56–69.

    Article  CAS  Google Scholar 

  40. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 Activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618–31.

    Article  CAS  PubMed  Google Scholar 

  41. Ebert O, Finke S, Salahi A, Herrmann M, Trojaneck B, Lefterova P, et al. Lymphocyte apoptosis: induction by gene transfer techniques. Gene Ther. 1997;4:296–302.

    Article  CAS  PubMed  Google Scholar 

  42. Wu Z, Chen C, Luo J, Davis JRJ, Zhang B, Tang L, et al. EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) nanoparticles as a carrier for the delivery of CCR2- shRNA to atherosclerotic macrophage in vitro. Sci Rep. 2020;10:19636.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Song P, Li S, Wu H, Gao R, Rao G, Wang D, et al. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease. Protein Cell. 2016;7:114–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu D, Kong M, Chen C, Luo J, Kong L. Iso-seco-tanapartholide induces p62 covalent oligomerization to activate KEAP1-NRF2 redox pathway in rheumatoid arthritis. Int Immunopharmacol. 2023;115:109689.

    Article  CAS  PubMed  Google Scholar 

  45. Kinnula VL, Fattman CL, Tan RJ, Oury TD. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med. 2005;172:417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016;44:450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015:816460.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling: macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  CAS  PubMed  Google Scholar 

  49. Puttur F, Gregory LG, Lloyd CM. Airway macrophages as the guardians of tissue repair in the lung. Immunol Cell Biol. 2019;97:246–57.

    Article  CAS  PubMed  Google Scholar 

  50. Sari E, He C, Margaroli C. Plasticity towards rigidity: a macrophage conundrum in pulmonary fibrosis. IJMS 2022;23:11443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu L, Surolia R, Larson-Casey JL, He C, Davis D, Kang J, et al. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling. Cell Death Differ. 2022;29:118–32.

    Article  CAS  PubMed  Google Scholar 

  52. Wang P, Geng J, Gao J, Zhao H, Li J, Shi Y, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun. 2019;10:755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rao LZ, Wang Y, Zhang L, Wu G, Zhang L, Wang FX, et al. IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death Differ. 2021;28:1270–83.

    Article  CAS  PubMed  Google Scholar 

  54. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20:689–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Wei J, Deng H, Zheng L, Yang H, Lv X. The role of Nrf2 in pulmonary fibrosis: molecular mechanisms and treatment approaches. Antioxidants 2022;11:1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng J, Wang Y, Wang Z, Chen W, Luo M, Zhang C, et al. Near-infrared Nrf2 activator IR-61 dye alleviates radiation-induced lung injury. Free Radic Res. 2022;56:411–26.

    Article  CAS  PubMed  Google Scholar 

  57. Jain A, Lamark T, Sjøttem E, Bowitz Larsen K, Atesoh Awuh J, Øvervatn A, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeng Q, Zhou T, Zhao F, Xiong D, He B, Hua Q, et al. p62-Nrf2 regulatory loop mediates the anti-pulmonary fibrosis effect of bergenin. Antioxidants 2022;11:307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cho HY, Reddy SPM, Yamamoto M, Kleeberger SR. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB j. 2004;18:1258–60.

    Article  CAS  PubMed  Google Scholar 

  60. Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci USA. 2012;109:13561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gallagher ER, Holzbaur ELF. SQSTM1/P62 promotes lysophagy via formation of liquid-like condensates maintained by HSP27. Autophagy 2023;19:3029–30.

    Article  CAS  PubMed  Google Scholar 

  62. Liu X, Yamashita T, Shang J, Shi X, Morihara R, Huang Y, et al. Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke model. J Cereb Blood Flow Metab. 2020;40:214–24.

    Article  CAS  PubMed  Google Scholar 

  63. Yang Y, Willis TL, Button RW, Strang CJ, Fu Y, Wen X, et al. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun. 2019;10:3759.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li P, Wang Y, Luo J, Zeng Q, Wang M, Bai M, et al. Downregulation of OCTN2 by cytokines plays an important role in the progression of inflammatory bowel disease. Biochem Pharm. 2020;178:114115.

    Article  CAS  PubMed  Google Scholar 

  65. He C, Carter AB. The metabolic prospective and redox regulation of macrophage polarization. J Clin Cell Immunol. 2015;6:371.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev. 2016;2016:2795090.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis. Front Immunol. 2020;11:583042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82073927), the Zhejiang Province Natural Science Foundation of China (LY23H310004) and the Zhejiang Provincial Medicine and Health Science Foundation (grant No. 2024KY191). We thank Prof. Huifang Tang (School of Basic Medical Sciences, Zhejiang University) for helping us develop the BALF collecting system; Kui Zeng and Haihong Hu (College of Pharmaceutical Sciences, Zhejiang University) for the guidance of animal experiments and management of instruments; Dan Wu (Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University) for her technical support of confocal laser scanning microscopy; Cheng Ma (Core Facilities, Zhejiang University School of Medicine) for his technical support.

Author information

Authors and Affiliations

Authors

Contributions

JL, PL, HJ, and YW designed research; JL, PL, MD, and YW performed research; YZ, MC, SL, HZ, NL, and YW contributed reagents/analytic tools; JL, MD, YZ, MC, and SL analyzed data; and JL, PL, HJ, and YW wrote the paper.

Corresponding authors

Correspondence to Huidi Jiang or Yuqing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All animal procedures were approved by the Institutional Animal Care and Use Committee of Zhejiang University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, P., Dong, M. et al. SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress. Cell Death Differ 31, 417–430 (2024). https://doi.org/10.1038/s41418-024-01266-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01266-w

Search

Quick links