Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H3K36 methyltransferase NSD1 protects against osteoarthritis through regulating chondrocyte differentiation and cartilage homeostasis

Abstract

Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H3K36 methylations decreased in aged cells and articular cartilage.
Fig. 2: Mice with K36M transgenic or Nsd1 knockout developed osteoarthritis.
Fig. 3: Nsd1 deficiency disrupted articular cartilage homeostasis.
Fig. 4: Disturbed cell proliferation, differentiation and metabolism after NSD1 knockout.
Fig. 5: Osr2 was regulated by NSD1 through H3K36 methylation.
Fig. 6: Osr2 complement could rescue the defect in chondrogenic differentiation and cartilage homeostasis caused by Nsd1 knockout.
Fig. 7: NSD1 and OSR2 were decreased in osteoarthritic cartilage.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary information files). The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020;396:1711–2.

    Article  PubMed  Google Scholar 

  2. Sharma L. Osteoarthritis of the Knee. N Engl J Med. 2021;384:51–9.

    Article  CAS  PubMed  Google Scholar 

  3. Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage symptomatic osteoarthritis of the knee - time for action. Nat Rev Rheumatol. 2021;17:621–32.

    Article  PubMed  Google Scholar 

  4. Simkin PA. A biography of the chondrocyte. Ann Rheum Dis. 2008;67:1064–8.

    Article  CAS  PubMed  Google Scholar 

  5. Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med. 2017;36:413–25.

    Article  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  7. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268:189–200.

    Article  CAS  PubMed  Google Scholar 

  8. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13:115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, et al. Di- and Tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in arabidopsis thaliana. Mol Cell Biol. 2023;28:1348–60.

    Article  Google Scholar 

  11. Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, et al. The histone H3.3K36M mutation reprograms the epigenome ofchondroblastomas. Science. 2016;352:1344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, et al. NSD1 is essential for early post‐implantation development and has a catalytically. EMBO J. 2003;22:3153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T, et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet. 2002;30:365–6.

    Article  CAS  PubMed  Google Scholar 

  15. Baujat G, Rio M, Rossignol S, Sanlaville D, Lyonnet S, Le Merrer M, et al. Paradoxical NSD1 Mutations in Beckwith-Wiedemann Syndrome and 11p15 Anomalies in Sotos Syndrome. Am J Hum Genet. 2004;74:715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agwu JC, Shaw NJ, Kirk J, Chapman S, Ravine D, Cole TRP. Growth in Sotos syndrome. Arch Dis Child. 1999;80:339–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Visser R, Landman EB, Goeman J, Wit JM, Karperien M. Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway. PLoS One. 2012;7:e49229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, Ouyang H, et al. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Res. 2021;9:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haseeb A, Kc R, Angelozzi M, de Charleroy C, Rux D, Tower RJ, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci USA. 2021;118:e2019152118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23:775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fafian-Labora JA, Rodriguez-Navarro JA, O’Loghlen A. Small extracellular vesicles have GST activity and ameliorate senescence-related tissue damage. Cell Metab. 2020;32:71–86.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhuang L, Jang Y, Park YK, Lee JE, Jain S, Froimchuk E, et al. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat Commun. 2018;9:1796.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, Yu CP, et al. Histone H3K27 demethylase UTX compromises articular chondrocyte anabolism and aggravates osteoarthritic degeneration. Cell Death Dis. 2022;13:538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang C, Shen J, Ying J, Xiao D, O’Keefe RJ. FoxO1 is a crucial mediator of TGF-beta/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc Natl Acad Sci USA. 2020;117:30488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.

    Article  CAS  PubMed  Google Scholar 

  27. Lam PY, Kamei CN, Mangos S, Mudumana S, Liu Y, Drummond IA. odd‐skipped related 2 is required for fin chondrogenesis in zebrafish. Dev Dyn. 2013;242:1284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao Y, Lan Y, Liu H, Jiang R. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev Biol. 2011;352:83–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Gong W, Shao X, Shi T, Zhang L, Dong J, et al. METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis. 2022;81:87–99.

    Article  CAS  PubMed  Google Scholar 

  30. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002;33:77–80.

    Article  CAS  PubMed  Google Scholar 

  31. Nohno T, Koyama E, Myokai F, Taniguchi S, Ohuchi H, Saito T, et al. Development biology-A chicken homeobox gene related to drosophila paired is predominantly expressed in the developing limb. Dev Biol. 1993;158:254–64.

    Article  CAS  PubMed  Google Scholar 

  32. Bragdon BC, Bennie A, Molinelli A, Liu Y, Gerstenfeld LC. Post natal expression of Prx1 labels appendicular restricted progenitor cell populations of multiple tissues. J Cell Physiol. 2022;237:2550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zanoni P, Steindl K, Sengupta D, Joset P, Bahr A, Sticht H, et al. Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genet Med. 2021;23:1474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boczek NJ, Lahner CA, Nguyen TM, Ferber MJ, Hasadsri L, Thorland EC, et al. Developmental delay and failure to thrive associated with a loss‐of‐function variant in WHSC1 (NSD2). Am J Med Genet Part A. 2018;176:2798–802.

    Article  CAS  PubMed  Google Scholar 

  35. Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2007;27:406–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Fang Y, Tang Y, Han S, Jia J, Wan X, et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun. 2022;13:3190.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Niu N, Li L, Shao R, Ouyang H, Zou W. H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells. PLoS Biol. 2018;16:e2006522.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Lan Y, Chai Y, Jiang R. Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science. 2009;323:1232–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, et al. Lipid metabolism in cartilage development, degeneration, and regeneration. Nutrients. 2022;14:3984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Villalvilla A, Gómez R, Largo R, Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci. 2013;14:20793–808.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhu S, Makosa D, Miller B, Griffin TM. Glutathione as a mediator of cartilage oxidative stress resistance and resilience during aging and osteoarthritis. Connect Tissue Res. 2019;61:34–47.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoshimoto M, Sadamori K, Tokumura K, Tanaka Y, Fukasawa K, Hinoi E. Bioinformatic analysis reveals potential relationship between chondrocyte senescence and protein glycosylation in osteoarthritis pathogenesis. Front Endocrinol. 2023;14:1153689.

    Article  Google Scholar 

  43. Murphy CL, Thoms BL, Vaghjiani RJ, Lafont JE. HIF-mediated articular chondrocyte function: prospects for cartilage repair. Arthritis Res Ther. 2009;11:213.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Arden NK, Perry TA, Bannuru RR, Bruyere O, Cooper C, Haugen IK, et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines. Nat Rev Rheumatol. 2021;17:59–66.

    Article  CAS  PubMed  Google Scholar 

  45. Sabha M, Hochberg MC. Non-surgical management of hip and knee osteoarthritis; comparison of ACR/AF and OARSI 2019 and VA/DoD 2020 guidelines. Osteoarthritis and Cartilage Open. 4 (2022).

  46. Jones IA, Togashi R, Wilson ML, Heckmann N, Vangsness CT. Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 2018;15:77–90.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xinyuan Liu (Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai) for providing vectors and reagents related to the adenovirus package. We also thank the members of the Zou lab for helpful discussions.

Funding

This work was supported by the National Key Research and Development Program of China (2022YFA1106800, 2022YFA0806600), the National Natural Science Foundation of China (NSFC) (82230082, 81991512, 82202742, 81902212), the Strategic Priority Research Program of the Chinese Academy of Science (XDB0570000), the CAS Project for Young Scientists in Basic Research (YSBR-077), the Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System (BJ1- 9000- 22- 4002).

Author information

Authors and Affiliations

Authors

Contributions

WZ and RS designed the research; RS, JS, ZZ performed the research; LZ, KG, CZ and QB contributed reagents and analytical tools; MK and QB collected human cartilage samples; RS, JS, ZZ and WZ analyzed the data; RS and WZ wrote the paper.

Corresponding authors

Correspondence to Changqing Zhang or Weiguo Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The experimental protocol for animal studies was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of the CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences. Human articular cartilage samples were obtained with the informed consent of the patients and the approval of the ethics committee of Shanghai Sixth People’s Hospital and Zhejiang Provincial People’s Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, R., Suo, J., Zhang, Z. et al. H3K36 methyltransferase NSD1 protects against osteoarthritis through regulating chondrocyte differentiation and cartilage homeostasis. Cell Death Differ 31, 106–118 (2024). https://doi.org/10.1038/s41418-023-01244-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01244-8

This article is cited by

Search

Quick links