Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration

Abstract

Mitochondrial malic enzyme 2 (ME2), which catalyzes the conversion of malate to pyruvate, is frequently upregulated during tumorigenesis and is a potential target for cancer therapy. However, the regulatory mechanism underlying ME2 activity is largely unknown. In this study, we demonstrate that ME2 is highly expressed in human colorectal cancer (CRC) tissues, and that ME2 knockdown inhibits the proliferation of CRC cells. Furthermore, we reveal that ME2 is succinylated and identify Sirtuins 5 (SIRT5) as an ME2 desuccinylase. Glutamine deprivation directly enhances the interaction of SIRT5 with ME2 and thus promotes SIRT5-mediated desuccinylation of ME2 at lysine 346, activating ME2 enzymatic activity. Activated ME2 significantly enhances mitochondrial respiration, thereby counteracting the effects of glutamine deprivation and supporting cell proliferation and tumorigenesis. Additionally, the levels of succinylated ME2 at K346 and SIRT5 in CRC tissues, which are negatively correlated, are associated with patient prognosis. These observations suggest that SIRT5-catalyzed ME2 desuccinylation is a key signaling event through which cancer cells maintain mitochondrial respiration and promote CRC progression under glutamine deficiency conditions, offering the possibility of targeting SIRT5-mediated ME2 desuccinylation for CRC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ME2 is overexpressed in CRC cells and promotes their proliferation.
Fig. 2: SIRT5 interacts with and desuccinylates ME2.
Fig. 3: ME2 is succinylated at lysine 346.
Fig. 4: Desuccinylation at K346 by SIRT5 enhances ME2 activity.
Fig. 5: ME2 K346 desuccinylation modulates mitochondrial respiration and redox homeostasis.
Fig. 6: ME2 K346 desuccinylation promotes tumor growth.
Fig. 7: ME2 K346 succinylation and SIRT5 are aberrantly expressed in CRC tissues.

Similar content being viewed by others

Data availability

The full and uncropped western blots were uploaded as the Supplemental Material. Other datasets used and/or analyzed during the study are available from the corresponding author on reasonable request.

References

  1. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022;34:355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab. 2021;33:33–50.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24.

    Article  CAS  PubMed  Google Scholar 

  4. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11:9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Bie J, Zhao L, Song C, Zhang T, Li M, et al. SLC25A51 promotes tumor growth through sustaining mitochondria acetylation homeostasis and proline biogenesis. Cell Death Differ. 2023;30:1916–30.

    Article  CAS  PubMed  Google Scholar 

  7. Sedlak JC, Yilmaz OH, Roper J. Metabolism and colorectal cancer. Annu Rev Pathol. 2023;18:467–92.

    Article  CAS  PubMed  Google Scholar 

  8. Sainero-Alcolado L, Liano-Pons J, Ruiz-Perez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 2022;29:1304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.

    Article  CAS  PubMed  Google Scholar 

  11. Wei Z, Song J, Wang G, Cui X, Zheng J, Tang Y, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 2018;9:4468.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qiao S, Lu W, Glorieux C, Li J, Zeng P, Meng N, et al. Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer. Oncogene. 2021;40:5880–92.

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Qi L, Knifley T, Piecoro DW, Rychahou P, Liu J, et al. S100A4 alters metabolism and promotes invasion of lung cancer cells by up-regulating mitochondrial complex I protein NDUFS2. J Biol Chem. 2019;294:7516–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YP, Sharda A, Xu SN, van Gastel N, Man CH, Choi U, et al. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metab. 2021;33:1027–1041.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao M, Yao P, Mao Y, Wu J, Wang W, Geng C, et al. Malic enzyme 2 maintains protein stability of mutant p53 through 2-hydroxyglutarate. Nat Metab. 2022;4:225–38.

    Article  CAS  PubMed  Google Scholar 

  17. Dey P, Baddour J, Muller F, Wu CC, Wang H, Liao WT, et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017;542:119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Zhang Z, Li W, Si Y, Li L, Du W. alphaKG-driven RNA polymerase II transcription of cyclin D1 licenses malic enzyme 2 to promote cell-cycle progression. Cell Rep. 2023;42:112770.

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Gibson GE. Succinylation Links Metabolism to Protein Functions. Neurochem Res. 2019;44:2346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, et al. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 2018;78:372–86.

    Article  PubMed  Google Scholar 

  21. Tong Y, Guo D, Lin SH, Liang J, Yang D, Ma C, et al. SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells. Mol Cell. 2021;81:2303–16 e8.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Kou J, Zhang Z, Li H, Li L, Du W. Cellular redox homeostasis maintained by malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis. Proc Natl Acad Sci USA. 2023;120:e2217869120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9:545.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hao Y, Samuels Y, Li Q, Krokowski D, Guan BJ, Wang C, et al. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun. 2016;7:11971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16:258–64.

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh JY, Chen KC, Wang CH, Liu GY, Ye JA, Chou YT, et al. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun Biol. 2023;6:548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu Y, Gu L, Lin X, Liu C, Lu B, Cui K, et al. Dynamic regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol Cell. 2020;77:138–49.e5.

    Article  CAS  PubMed  Google Scholar 

  28. Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 2014;56:414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J Clin Invest. 2021;131:e140100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pei X, Li KY, Shen Y, Li JT, Lei MZ, Fang CY, et al. Palmitoylation of MDH2 by ZDHHC18 activates mitochondrial respiration and accelerates ovarian cancer growth. Sci China Life Sci. 2022;65:2017–30.

    Article  CAS  PubMed  Google Scholar 

  33. Qian X, Li X, Cai Q, Zhang C, Yu Q, Jiang Y, et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol Cell. 2017;65:917–931.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Shi X, Lu H, Zhang C, Li X, Zhang T, et al. Succinylation inhibits the enzymatic hydrolysis of the extracellular matrix protein fibrillin 1 and promotes gastric cancer progression. Adv Sci. 2022;9:e2200546.

    Article  Google Scholar 

  35. Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 2013;441:191–5.

    Article  CAS  PubMed  Google Scholar 

  36. Qi H, Ning X, Yu C, Ji X, Jin Y, McNutt MA, et al. Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis. 2019;10:170.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang K, Hu Z, Zhang C, Yang L, Feng L, Yang P, et al. SIRT5 contributes to colorectal cancer growth by regulating T cell activity. J Immunol Res. 2020;2020:3792409.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Rong F, Tang J, Zhu C, Chen X, Jia S, et al. Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage. Cell Death Differ. 2022;29:722–36.

    Article  CAS  PubMed  Google Scholar 

  39. Hu T, Shukla SK, Vernucci E, He C, Wang D, King RJ, et al. Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology. 2021;161:1584–600.

    Article  CAS  PubMed  Google Scholar 

  40. Sarfraz I, Rasul A, Hussain G, Hussain SM, Ahmad M, Nageen B, et al. Malic enzyme 2 as a potential therapeutic drug target for cancer. IUBMB Life. 2018;70:1076–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Li Jia (Shanghai Institute of Materia Medica, Chinese Academy of Sciences) for providing the pRH-ME2 plasmids. We also thank Professor Yu Wei (Fudan University) for providing the SIRT5-HA and SIRT5-HA H158Y plasmids. This work was supported by the Natural Science Foundation of China (82002964, 82173063), China Postdoctoral Science Foundation (2022M711370), Wuxi Taihu Lake Talent Plan for Leading Talents in Medical and Health Profession, Wuxi Medical Key Discipline (ZDXK2021002) and Youth Program of Wuxi Medical Foundation (Q202123).

Author information

Authors and Affiliations

Authors

Contributions

CL, PT, and ZH designed the research. CL and PT performed most of the experiments. KC performed bioinformatic analyses. SY and BF collected clinical samples. ZH and CL supervised the project. CL, PT, FL, and ZH wrote the manuscript.

Corresponding authors

Correspondence to Chaoqun Li or Zhaohui Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were performed in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals and were approved by the Clinical Research Ethics Committees of Jiangnan University (JN. No20220515b0320730[151]).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, P., Cui, K., Yao, S. et al. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration. Cell Death Differ 31, 65–77 (2024). https://doi.org/10.1038/s41418-023-01240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01240-y

Search

Quick links