Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond

Subjects

Abstract

RNA modifications, known as the “epitranscriptome”, represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed “writers”, “readers”, and “erasers”, can dynamically alter the MSCs’ transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origin, characteristics, therapeutic strategies, and applications of MSCs.
Fig. 2: Types of RNA modifications and their influential role in RNA metabolism.
Fig. 3: Influences of RNA modification on osteogenic differentiation of MSCs.
Fig. 4: The pivotal role of RNA modifications in MSC adipogenic differentiation.
Fig. 5: Role of RNA modifications in other lineage-specific differentiations of MSCs.
Fig. 6: RNA modifications and their impact on MSCs proliferation, self-renewal, migration, and senescence.
Fig. 7: Role of RNA modifications in MSC paracrine signaling.

Similar content being viewed by others

References

  1. Pratanwanich PN, Yao F, Chen Y, Koh CWQ, Wan YK, Hendra C, et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat Biotechnol. 2021;39:1394–402.

    Article  CAS  PubMed  Google Scholar 

  2. Nie F, Feng P, Song X, Wu M, Tang Q, Chen W. RNAWRE: a resource of writers, readers and erasers of RNA modifications. Database. 2020;2020:baaa049.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson E, Cui YH, He YY. Roles of RNA modifications in diverse cellular functions. Front Cell Dev Biol. 2022;10:828683.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wei B, Zeng M, Yang J, Li S, Zhang J, Ding N, et al. N(6)-methyladenosine RNA modification: a potential regulator of stem cell proliferation and differentiation. Front Cell Dev Biol. 2022;10:835205.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun W, Zhang B, Bie Q, Ma N, Liu N, Shao Z. The role of RNA methylation in regulating stem cell fate and function-focus on m(6)A. Stem Cells Int. 2021;2021:8874360.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang M, Zhai Y, Zhang S, Dai X, Li Z. Roles of N6-methyladenosine (m(6)A) in stem cell fate decisions and early embryonic development in mammals. Front Cell Dev Biol. 2020;8:782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ji R, Zhang X. The roles of RNA N6-methyladenosine in regulating stem cell fate. Front Cell Dev Biol. 2021;9:765635.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vissers C, Sinha A, Ming GL, Song H. The epitranscriptome in stem cell biology and neural development. Neurobiol Dis. 2020;146:105139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frye M, Blanco S. Post-transcriptional modifications in development and stem cells. Development. 2016;143:3871–81.

    Article  CAS  PubMed  Google Scholar 

  10. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109:923–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021;14:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010;62:1167–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharm Sin. 2013;34:747–54.

    Article  CAS  Google Scholar 

  15. Selich A, Ha TC, Morgan M, Falk CS, von Kaisenberg C, Schambach A, et al. Cytokine selection of MSC clones with different functionality. Stem Cell Rep. 2019;13:262–73.

    Article  CAS  Google Scholar 

  16. Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation. J Anat. 2015;227:717–31.

    Article  PubMed  Google Scholar 

  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  18. Oh JY, Kim H, Lee HJ, Lee K, Barreda H, Kim HJ, et al. MHC Class I enables MSCs to evade NK-cell-mediated cytotoxicity and exert immunosuppressive activity. Stem Cells. 2022;40:870–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    Article  CAS  PubMed  Google Scholar 

  20. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    Article  CAS  PubMed  Google Scholar 

  21. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107:1484–90.

    Article  CAS  PubMed  Google Scholar 

  22. Karlsson H, Samarasinghe S, Ball LM, Sundberg B, Lankester AC, Dazzi F, et al. Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood. 2008;112:532–41.

    Article  CAS  PubMed  Google Scholar 

  23. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.

    Article  CAS  PubMed  Google Scholar 

  24. Maqbool M, Algraittee SJR, Boroojerdi MH, Sarmadi VH, John CM, Vidyadaran S, et al. Human mesenchymal stem cells inhibit the differentiation and effector functions of monocytes. Innate Immun. 2020;26:424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory function: the link with key immunoregulatory molecules. Haematologica. 2013;98:e121–2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323–48.

    Article  CAS  Google Scholar 

  27. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;13:1738–55.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 2022;29:1515–30.

    Article  CAS  PubMed  Google Scholar 

  29. Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 2023;20:558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Li Y, Lu F, Dong Z. Endogenous bone marrow-derived stem cell mobilization and homing for in situ tissue regeneration. Stem Cells. 2023;41:541–51.

    Article  PubMed  Google Scholar 

  31. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  32. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells. 2006;24:23–33.

    Article  CAS  PubMed  Google Scholar 

  33. Huang Y, Wang J, Cai J, Qiu Y, Zheng H, Lai X, et al. Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation. Theranostics. 2018;8:5929–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yueyi C, Xiaoguang H, Jingying W, Quansheng S, Jie T, Xin F, et al. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials. 2013;34:9373–80.

    Article  PubMed  Google Scholar 

  35. Hazrati A, Malekpour K, Soudi S, Hashemi SM. CRISPR/Cas9-engineered mesenchymal stromal/stem cells and their extracellular vesicles: a new approach to overcoming cell therapy limitations. Biomed Pharmacother. 2022;156:113943.

    Article  CAS  PubMed  Google Scholar 

  36. Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, et al. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res. 2023;27:31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim HS, Lee JH, Roh KH, Jun HJ, Kang KS, Kim TY. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells. 2017;35:248–55.

    Article  CAS  PubMed  Google Scholar 

  38. Li TT, Zhang B, Fang H, Shi M, Yao WQ, Li Y, et al. Human mesenchymal stem cell therapy in severe COVID-19 patients: 2-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine. 2023;92:104600.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res Ther. 2021;12:545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hass R. Role of MSC in the tumor microenvironment. Cancers. 2020;12:2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett. 2021;26:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang X, Li W, Ge L, Lu M. Mesenchymal stem cell senescence during aging: from mechanisms to rejuvenation strategies. Aging Dis. 2023;14:1651–76.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci. 2016;17:1164.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials. 2019;203:96–110.

    Article  CAS  PubMed  Google Scholar 

  45. Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, et al. Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med. 2022;11:356–71.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Madonna R, Taylor DA, Geng YJ, De Caterina R, Shelat H, Perin EC, et al. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res. 2013;113:902–14.

    Article  CAS  PubMed  Google Scholar 

  47. Yin Y, Wu RX, He XT, Xu XY, Wang J, Chen FM. Influences of age-related changes in mesenchymal stem cells on macrophages during in-vitro culture. Stem Cell Res Ther. 2017;8:153.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee BC, Yu KR. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep. 2020;53:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer. 2020;19:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci. 2013;38:204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, et al. Novel insights into the role of N6-methyladenosine RNA modification in bone pathophysiology. Stem Cells Dev. 2021;30:17–28.

    Article  CAS  PubMed  Google Scholar 

  52. Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, et al. N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367:580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou T, Han D, Liu J, Shi J, Zhu P, Wang Y, et al. Factors influencing osteogenic differentiation of human aortic valve interstitial cells. J Thorac Cardiovasc Surg. 2021;161:e163–e85.

    Article  PubMed  Google Scholar 

  54. Liu Y, Zhou J, Li X, Zhang X, Shi J, Wang X, et al. tRNA-m(1)A modification promotes T cell expansion via efficient MYC protein synthesis. Nat Immunol. 2022;23:1433–44.

    Article  CAS  PubMed  Google Scholar 

  55. Schmid M, Jensen TH. Controlling nuclear RNA levels. Nat Rev Genet. 2018;19:518–29.

    Article  CAS  PubMed  Google Scholar 

  56. Höpfler M, Absmeier E, Peak-Chew SY, Vartholomaiou E, Passmore LA, Gasic I, et al. Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Mol Cell. 2023;83:2290–302.e13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hajnsdorf E, Kaberdin VR. RNA polyadenylation and its consequences in prokaryotes. Philos Trans R Soc Lond B Biol Sci. 2018;373:20180166.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ye G, Li J, Yu W, Xie Z, Zheng G, Liu W, et al. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp Mol Med. 2023;55:1743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, et al. Insight into m(6)A methylation from occurrence to functions. Open Biol. 2020;10:200091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63:306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534:575–8.

    Article  CAS  PubMed  Google Scholar 

  65. Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69:1028–38.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, et al. VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sendinc E, Shi Y. RNA m6A methylation across the transcriptome. Mol Cell. 2023;83:428–41.

    Article  CAS  PubMed  Google Scholar 

  69. Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garbo S, Zwergel C, Battistelli C. m6A RNA methylation and beyond - The epigenetic machinery and potential treatment options. Drug Discov Today. 2021;26:2559–74.

    Article  CAS  PubMed  Google Scholar 

  71. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu R, Li A, Sun B, Sun JG, Zhang J, Zhang T, et al. A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29:23–41.

    Article  PubMed  Google Scholar 

  73. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang J, Guo C, Wang Y, Zhou Y. Role of N6-adenosine-methyltransferase subunits METTL3 and METTL14 in the biological properties of periodontal ligament cells. Tissue Cell. 2023;82:102081.

    Article  CAS  PubMed  Google Scholar 

  75. McMillan M, Gomez N, Hsieh C, Bekier M, Li X, Miguez R, et al. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell. 2023;83:219–36.e7.

    Article  CAS  PubMed  Google Scholar 

  76. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trixl L, Lusser A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 2019;10:e1510.

    Article  PubMed  Google Scholar 

  78. Nombela P, Miguel-López B, Blanco S. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer. 2021;20:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, et al. Role of main RNA modifications in cancer: N(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther. 2022;7:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27:606–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liao H, Gaur A, McConie H, Shekar A, Wang K, Chang JT, et al. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res. 2022;50:10695–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, et al. NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance p21 Translation. J Cell Biochem. 2017;118:2587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trixl L, Amort T, Wille A, Zinni M, Ebner S, Hechenberger C, et al. RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell Mol Life Sci. 2018;75:1483–97.

    Article  CAS  PubMed  Google Scholar 

  84. Selmi T, Hussain S, Dietmann S, Heiss M, Borland K, Flad S, et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res. 2021;49:1006–22.

    Article  CAS  PubMed  Google Scholar 

  85. Shen H, Ontiveros RJ, Owens MC, Liu MY, Ghanty U, Kohli RM, et al. TET-mediated 5-methylcytosine oxidation in tRNA promotes translation. J Biol Chem. 2021;296:100087.

    Article  CAS  PubMed  Google Scholar 

  86. Yang H, Wang Y, Xiang Y, Yadav T, Ouyang J, Phoon L, et al. FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation. Proc Natl Acad Sci USA. 2022;119:e2116251119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, et al. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell. 2023;30:1072–90.e10.

    Article  PubMed  Google Scholar 

  88. He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ, et al. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 2021;28:62–70.

    Article  CAS  PubMed  Google Scholar 

  89. Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75:1188–202.e11.

    Article  CAS  PubMed  Google Scholar 

  90. Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.

    Article  CAS  PubMed  Google Scholar 

  91. Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m(6)A mRNA modifications. Nat Rev Mol Cell Biol. 2023;24:714–31.

    Article  CAS  PubMed  Google Scholar 

  92. Lin P, Li G, Wu M. RNA methylation into m(1)A era: a new regulation over T-cell function. Signal Transduct Target Ther. 2023;8:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Waku T, Nakajima Y, Yokoyama W, Nomura N, Kako K, Kobayashi A, et al. NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. J Cell Sci. 2016;129:2382–93.

    CAS  PubMed  Google Scholar 

  94. Howell NW, Jora M, Jepson BF, Limbach PA, Jackman JE. Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B. RNA. 2019;25:1366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bar-Yaacov D, Frumkin I, Yashiro Y, Chujo T, Ishigami Y, Chemla Y, et al. Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol. 2016;14:e1002557.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71:973–85.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng W, Ma J, Tao Q, Adeel K, Xiang L, Liu D, et al. Demethylation of m1A assisted degradation of the signal probe for rapid electrochemical detection of ALKBH3 activity with practical applications. Talanta. 2022;240:123151.

    Article  CAS  PubMed  Google Scholar 

  98. Wu Y, Chen Z, Xie G, Zhang H, Wang Z, Zhou J, et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci USA. 2022;119:e2119038119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell. 2016;167:1897.

    Article  CAS  PubMed  Google Scholar 

  100. Woo HH, Chambers SK. Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim Biophys Acta Gene Regul Mech. 2019;1862:35–46.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang LS, Xiong QP, Pena Perez S, Liu C, Wei J, Le C, et al. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat Cell Biol. 2021;23:684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kumar S, Mohapatra T. Deciphering epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front Cell Dev Biol. 2021;9:628415.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tsai K, Jaguva Vasudevan AA, Martinez Campos C, Emery A, Swanstrom R, Cullen BR. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe. 2020;28:306–12.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Owens MC, Zhang C, Liu KF. Recent technical advances in the study of nucleic acid modifications. Mol Cell. 2021;81:4116–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arango D, Sturgill D, Yang R, Kanai T, Bauer P, Roy J, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82:2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jin G, Xu M, Zou M, Duan S. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic review. Mol Ther Nucleic Acids. 2020;20:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N(7)-methylguanosine (m7G) in cancer. J Hematol Oncol. 2022;15:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boulias K, Greer EL. Put the pedal to the METTL1: adding internal m(7)G increases mRNA translation efficiency and augments miRNA processing. Mol Cell. 2019;74:1105–7.

    Article  CAS  PubMed  Google Scholar 

  109. Katsara O, Schneider RJ. m(7)G tRNA modification reveals new secrets in the translational regulation of cancer development. Mol Cell. 2021;81:3243–5.

    Article  CAS  PubMed  Google Scholar 

  110. Ruiz-Arroyo VM, Raj R, Babu K, Onolbaatar O, Roberts PH, Nam Y. Structures and mechanisms of tRNA methylation by METTL1-WDR4. Nature. 2023;613:383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71:244–55.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen J, Li K, Chen J, Wang X, Ling R, Cheng M, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. 2022;42:223–44.

    Article  Google Scholar 

  113. Zhu S, Wu Y, Zhang X, Peng S, Xiao H, Chen S, et al. Targeting N(7)-methylguanosine tRNA modification blocks hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. Mol Ther. 2023;31:1596–614.

    Article  CAS  PubMed  Google Scholar 

  114. Labourier E, Adams MD, Rio DC. Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and U1 snRNP 70K protein. Mol Cell. 2001;8:363–73.

    Article  CAS  PubMed  Google Scholar 

  115. Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 2014;42:3492–501.

    Article  CAS  PubMed  Google Scholar 

  116. Guzzi N, Muthukumar S, Cieśla M, Todisco G, Ngoc PCT, Madej M, et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol. 2022;24:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 2011;44:660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martinez NM, Su A, Burns MC, Nussbacher JK, Schaening C, Sathe S, et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell. 2022;82:645–59.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guzzi N, Ciesla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173:1204–16.e26.

    Article  CAS  PubMed  Google Scholar 

  120. Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020;16:160–9.

    Article  CAS  PubMed  Google Scholar 

  121. Huang C, Wu G, Yu YT. Inducing nonsense suppression by targeted pseudouridylation. Nat Protoc. 2012;7:789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry. 2022;27:3633–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eisenberg E, Levanon EY. A-to-I RNA editing - immune protector and transcriptome diversifier. Nat Rev Genet. 2018;19:473–90.

    Article  CAS  PubMed  Google Scholar 

  124. Rong D, Sun G, Wu F, Cheng Y, Sun G, Jiang W, et al. Epigenetics: roles and therapeutic implications of non-coding RNA modifications in human cancers. Mol Ther Nucleic Acids. 2021;25:67–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang X, Li L. The significance of 8-oxoGsn in aging-related diseases. Aging Dis. 2020;11:1329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dimitrova DG, Teysset L, Carré C. RNA 2’-O-methylation (Nm) modification in human diseases. Genes. 2019;10:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2’-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14:695–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu H, Qin W, Lu S, Wang X, Zhang J, Sun T, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2’-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer. 2020;19:95.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yang Z, Ebright YW, Yu B, Chen X. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2’ OH of the 3’ terminal nucleotide. Nucleic Acids Res. 2006;34:667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Monaco PL, Marcel V, Diaz JJ, Catez F. 2’-O-methylation of ribosomal RNA: towards an epitranscriptomic control of translation? Biomolecules. 2018;8:106.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wang Y, Rohde C, Zhou F, Hennrich M, Poisa-Beiro L, Eckstein V, et al. The ribomethylome landscape of hematopoietic system. Blood. 2020;136:41–2.

    Article  Google Scholar 

  132. Zhou F, Aroua N, Liu Y, Rohde C, Cheng J, Wirth AK, et al. A dynamic rRNA ribomethylome drives stemness in acute myeloid leukemia. Cancer Discov. 2023;13:332–47.

    Article  CAS  PubMed  Google Scholar 

  133. Nachmani D, Bothmer AH, Grisendi S, Mele A, Bothmer D, Lee JD, et al. Germline NPM1 mutations lead to altered rRNA 2’-O-methylation and cause dyskeratosis congenita. Nat Genet. 2019;51:1518–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Häfner SJ, Jansson MD, Altinel K, Andersen KL, Abay-Nørgaard Z, Ménard P, et al. Ribosomal RNA 2’-O-methylation dynamics impact cell fate decisions. Dev Cell. 2023;58:1593–609.e9.

    Article  PubMed  Google Scholar 

  135. Ganem NS, Ben-Asher N, Lamm AT. In cancer, A-to-I RNA editing can be the driver, the passenger, or the mechanic. Drug Resist Updat. 2017;32:16–22.

    Article  PubMed  Google Scholar 

  136. Quin J, Sedmik J, Vukic D, Khan A, Keegan LP, O’Connell MA. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem Sci. 2021;46:758–71.

    Article  CAS  PubMed  Google Scholar 

  137. Liao Y, Jung SH, Kim T. A-to-I RNA editing as a tuner of noncoding RNAs in cancer. Cancer Lett. 2020;494:88–93.

    Article  CAS  PubMed  Google Scholar 

  138. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17:83–96.

    Article  CAS  PubMed  Google Scholar 

  139. Walkley CR, Li JB. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017;18:205.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bertotti S, Fleming I, Camara MLM, Centeno Camean C, Carmona SJ, Aguero F, et al. Characterization of ADAT2/3 molecules in Trypanosoma cruzi and regulation of mucin gene expression by tRNA editing. Biochem J. 2022;479:561–80.

    Article  CAS  PubMed  Google Scholar 

  141. Liu X, Chen R, Sun Y, Chen R, Zhou J, Tian Q, et al. Crystal structure of the yeast heterodimeric ADAT2/3 deaminase. BMC Biol. 2020;18:189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 2016;22:1140–50.

    Article  CAS  PubMed  Google Scholar 

  143. Savva YA, Rieder LE, Reenan RA. The ADAR protein family. Genome Biol. 2012;13:252.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Kim KY, et al. RNA editing in RHOQ promotes invasion potential in colorectal cancer. J Exp Med. 2014;211:613–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shigeyasu K, Okugawa Y, Toden S, Miyoshi J, Toiyama Y, Nagasaka T, et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight. 2018;3:e99976.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cui L, Ma R, Cai J, Guo C, Chen Z, Yao L, et al. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022;7:334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hsieh CL, Liu H, Huang Y, Kang L, Chen HW, Chen YT, et al. ADAR1 deaminase contributes to scheduled skeletal myogenesis progression via stage-specific functions. Cell Death Differ. 2014;21:707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen J, Liu HF, Qiao LB, Wang FB, Wang L, Lin Y, et al. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. Mol Ther Nucleic Acids. 2021;26:879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Osenberg S, Paz Yaacov N, Safran M, Moshkovitz S, Shtrichman R, Sherf O, et al. Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS ONE. 2010;5:e11173.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Moen EL, Mariani CJ, Zullow H, Jeff-Eke M, Litwin E, Nikitas JN, et al. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Immunol Rev. 2015;263:36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Torsin LI, Petrescu GED, Sabo AA, Chen B, Brehar FM, Dragomir MP, et al. Editing and chemical modifications on non-coding RNAs in cancer: a new tale with clinical significance. Int J Mol Sci. 2021;22:581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kuehner JN, Chen J, Bruggeman EC, Wang F, Li Y, Xu C, et al. 5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer’s disease. Cell Rep. 2021;35:109042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lan J, Rajan N, Bizet M, Penning A, Singh NK, Guallar D, et al. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat Commun. 2020;11:4956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yan LL, Zaher HS. How do cells cope with RNA damage and its consequences? J Biol Chem. 2019;294:15158–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jamar NH, Kritsiligkou P, Grant CM. The non-stop decay mRNA surveillance pathway is required for oxidative stress tolerance. Nucleic Acids Res. 2017;45:6881–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS. An active role for the ribosome in determining the fate of oxidized mRNA. Cell Rep. 2014;9:1256–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays. 2003;25:691–8.

    Article  CAS  PubMed  Google Scholar 

  159. Ishii T, Hayakawa H, Igawa T, Sekiguchi T, Sekiguchi M. Specific binding of PCBP1 to heavily oxidized RNA to induce cell death. Proc Natl Acad Sci USA. 2018;115:6715–20.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ishii T, Hayakawa H, Sekiguchi T, Adachi N, Sekiguchi M. Role of Auf1 in elimination of oxidatively damaged messenger RNA in human cells. Free Radic Biol Med. 2015;79:109–16.

    Article  CAS  PubMed  Google Scholar 

  161. Zheng X, Zhang W, Hu Y, Zhao Z, Wu J, Zhang X, et al. DNA repair byproduct 8-oxoguanine base promotes myoblast differentiation. Redox Biol. 2023;61:102634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tian C, Huang Y, Li Q, Feng Z, Xu Q. Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci. 2019;20:551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, et al. Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 2018;9:4772.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cai W, Ji Y, Han L, Zhang J, Ni Y, Cheng Y, et al. METTL3-dependent glycolysis regulates dental pulp stem cell differentiation. J Dent Res. 2022;101:580–9.

    Article  CAS  PubMed  Google Scholar 

  165. Sun W, Liu J, Zhang X, Zhang X, Gao J, Chen X, et al. Long noncoding RNA and mRNA m6A modification analyses of periodontal ligament stem cells from the periodontitis microenvironment exposed to static mechanical strain. Stem Cells Int. 2022;2022:6243004.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yuan X, Shi L, Guo Y, Sun J, Miao J, Shi J, et al. METTL3 regulates ossification of the posterior longitudinal ligament via the lncRNA XIST/miR-302a-3p/USP8 axis. Front Cell Dev Biol. 2021;9:629895.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Peng J, Zhan Y, Zong Y. METTL3-mediated LINC00657 promotes osteogenic differentiation of mesenchymal stem cells via miR-144-3p/BMPR1B axis. Cell Tissue Res. 2022;388:301–12.

    Article  CAS  PubMed  Google Scholar 

  168. Song Y, Pan Y, Wu M, Sun W, Luo L, Zhao Z, et al. METTL3-mediated lncRNA m(6)A modification in the osteogenic differentiation of human adipose-derived stem cells induced by NEL-Like 1 protein. Stem Cell Rev Rep. 2021;17:2276–90.

    Article  CAS  PubMed  Google Scholar 

  169. Yang Y, Zeng J, Jiang C, Chen J, Song C, Chen M, et al. METTL3-mediated lncSNHG7 m(6)A modification in the osteogenic/odontogenic differentiation of human dental stem cells. J Clin Med. 2022;12:113.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yu J, Shen L, Liu Y, Ming H, Zhu X, Chu M, et al. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-kappaB signaling. Mol Cell Biochem. 2020;463:203–10.

    Article  CAS  PubMed  Google Scholar 

  171. Huang C, Wang Y. Downregulation of METTL14 improves postmenopausal osteoporosis via IGF2BP1 dependent posttranscriptional silencing of SMAD1. Cell Death Dis. 2022;13:919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. He M, Lei H, He X, Liu Y, Wang A, Ren Z, et al. METTL14 regulates osteogenesis of bone marrow mesenchymal stem cells via inducing autophagy through m6A/IGF2BPs/Beclin-1 signal axis. Stem Cells Transl Med. 2022;11:987–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cheng C, Zhang H, Zheng J, Jin Y, Wang D, Dai Z. METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6. Aging. 2021;13:25903–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. You Y, Liu J, Zhang L, Li X, Sun Z, Dai Z, et al. WTAP-mediated m(6)A modification modulates bone marrow mesenchymal stem cells differentiation potential and osteoporosis. Cell Death Dis. 2023;14:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu J, You Y, Sun Z, Zhang L, Li X, Dai Z, et al. WTAP-mediated m6A RNA methylation regulates the differentiation of bone marrow mesenchymal stem cells via the miR-29b-3p/HDAC4 axis. Stem Cells Transl Med. 2023;12:307–21.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhang C, Yuan S, Chen Y, Wang B. Neohesperidin promotes the osteogenic differentiation of human bone marrow stromal cells by inhibiting the histone modifications of lncRNA SNHG1. Cell Cycle. 2021;20:1953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Son HE, Min HY, Kim EJ, Jang WG. Fat mass and obesity-associated (FTO) stimulates osteogenic differentiation of C3H10T1/2 Cells by inducing mild endoplasmic reticulum stress via a positive feedback loop with p-AMPK. Mol Cells. 2020;43:58–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sun R, Zhang C, Liu Y, Chen Z, Liu W, Yang F, et al. Demethylase FTO promotes mechanical stress induced osteogenic differentiation of BMSCs with up-regulation of HIF-1alpha. Mol Biol Rep. 2022;49:2777–84.

    Article  CAS  PubMed  Google Scholar 

  179. Chen LS, Zhang M, Chen P, Xiong XF, Liu PQ, Wang HB, et al. The m(6)A demethylase FTO promotes the osteogenesis of mesenchymal stem cells by downregulating PPARG. Acta Pharm Sin. 2022;43:1311–23.

    Article  CAS  Google Scholar 

  180. Wang J, Fu Q, Yang J, Liu JL, Hou SM, Huang X, et al. RNA N6-methyladenosine demethylase FTO promotes osteoporosis through demethylating Runx2 mRNA and inhibiting osteogenic differentiation. Aging. 2021;13:21134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang X, Wang Y, Zhao H, Han X, Zhao T, Qu P, et al. Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition. Stem Cell Res Ther. 2020;11:227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li Z, Wang P, Li J, Xie Z, Cen S, Li M, et al. The N(6)-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death Dis. 2021;12:578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu T, Zheng X, Wang C, Wang C, Jiang S, Li B, et al. The m(6)A “reader” YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death Dis. 2021;12:1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wen JR, Tan Z, Lin WM, Li QW, Yuan Q. [Role of m (6)A Reader YTHDC2 in Differentiation of Human Bone Marrow Mesenchymal Stem Cells]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021;52:402–8.

    PubMed  Google Scholar 

  185. Yang W, Li HY, Wu YF, Mi RJ, Liu WZ, Shen X, et al. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss. Mol Ther Nucleic Acids. 2021;26:135–47.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cui Z, Xu Y, Wu P, Lu Y, Tao Y, Zhou C, et al. NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification. Odontology. 2023;111:870–82.

    Article  CAS  PubMed  Google Scholar 

  187. Zhu Z, Xing X, Huang S, Tu Y. NAT10 promotes osteogenic differentiation of mesenchymal stem cells by mediating N4-acetylcytidine modification of gremlin 1. Stem Cells Int. 2021;2021:8833527.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pan ZP, Wang B, Hou DY, You RL, Wang XT, Xie WH, et al. METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia. FEBS Open Bio. 2021;11:1659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yao Y, Bi Z, Wu R, Zhao Y, Liu Y, Liu Q, et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPbeta pathway via an m(6)A-YTHDF2-dependent manner. FASEB J. 2019;33:7529–44.

    Article  CAS  PubMed  Google Scholar 

  190. Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 2021;8:746–58.

    Article  CAS  PubMed  Google Scholar 

  191. Shen GS, Zhou HB, Zhang H, Chen B, Liu ZP, Yuan Y, et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3644–54.

    Article  CAS  PubMed  Google Scholar 

  192. Cen S, Li J, Cai Z, Pan Y, Sun Z, Li Z, et al. TRAF4 acts as a fate checkpoint to regulate the adipogenic differentiation of MSCs by activating PKM2. EBioMedicine. 2020;54:102722.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Regue L, Wang W, Ji F, Avruch J, Wang H, Dai N. Human T2D-associated gene IMP2/IGF2BP2 promotes the commitment of mesenchymal stem cells into adipogenic lineage. Diabetes. 2023;72:33–44.

    Article  CAS  PubMed  Google Scholar 

  194. Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q, et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res. 2019;47:6130–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Liu Y, Zhao Y, Wu R, Chen Y, Chen W, Liu Y, et al. mRNA m5C controls adipogenesis by promoting CDKN1A mRNA export and translation. RNA Biol. 2021;18:711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yang L, Ren Z, Yan S, Zhao L, Liu J, Zhao L, et al. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun Biol. 2022;5:495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hu B, Zou X, Yu Y, Jiang Y, Xu H. METTL3 promotes SMSCs chondrogenic differentiation by targeting the MMP3, MMP13, and GATA3. Regen Ther. 2023;22:148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yang X, Lin Y, Chen T, Hu W, Li P, Qiu X, et al. YTHDF1 enhances chondrogenic differentiation by activating the Wnt/beta-catenin signaling pathway. Stem Cells Dev. 2023;32:115–30.

    Article  CAS  PubMed  Google Scholar 

  199. Pan Y, Liu Y, Cui D, Yu S, Zhou Y, Zhou X, et al. METTL3 enhances dentinogenesis differentiation of dental pulp stem cells via increasing GDF6 and STC1 mRNA stability. BMC Oral Health. 2023;23:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lin J, Zhu Q, Huang J, Cai R, Kuang Y. Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating Mettl3 and paracrine factors. Stem Cells Int. 2020;2020:2830565.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wang Y, Wang R, Yao B, Hu T, Li Z, Liu Y, et al. TNF-alpha suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m(6)A-demethylation of Nanog mRNA. Sci China Life Sci. 2020;63:80–91.

    Article  CAS  PubMed  Google Scholar 

  202. Li L, Zang L, Zhang F, Chen J, Shen H, Shu L, et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet. 2017;26:2398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang S, Zhang J, Wu X, Lin X, Liu XM, Zhou J. Differential roles of YTHDF1 and YTHDF3 in embryonic stem cell-derived cardiomyocyte differentiation. RNA Biol. 2021;18:1354–63.

    Article  CAS  PubMed  Google Scholar 

  204. Chen X, Zhao Q, Zhao YL, Chai GS, Cheng W, Zhao Z, et al. Targeted RNA N(6) -methyladenosine demethylation controls cell fate transition in human pluripotent stem cells. Adv Sci. 2021;8:e2003902.

    Article  Google Scholar 

  205. Luo H, Liu W, Zhang Y, Yang Y, Jiang X, Wu S, et al. METTL3-mediated m(6)A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Res Ther. 2021;12:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, et al. N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci. 2018;21:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Deng Y, Zhou Z, Ji W, Lin S, Wang M. METTL1-mediated m(7)G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther. 2020;11:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wu Z, Shi Y, Lu M, Song M, Yu Z, Wang J, et al. METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 2020;48:11083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Guo Z, Wang Z, Liu Y, Wu H, Zhang Q, Han J, et al. Carbon dots from lycium barbarum attenuate radiation-induced bone injury by inhibiting senescence via METTL3/Clip3 in an m(6)A-dependent manner. ACS Appl Mater Interfaces. 2023;15:20726–41.

    Article  CAS  PubMed  Google Scholar 

  210. He X, Yang Z, Chu XY, Li YX, Zhu B, Huang YX, et al. ROR2 downregulation activates the MSX2/NSUN2/p21 regulatory axis and promotes dental pulp stem cell senescence. Stem Cells. 2022;40:290–302.

    Article  PubMed  Google Scholar 

  211. Lei H, He M, He X, Li G, Wang Y, Gao Y, et al. METTL3 induces bone marrow mesenchymal stem cells osteogenic differentiation and migration through facilitating M1 macrophage differentiation. Am J Transl Res. 2021;13:4376–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Xie Z, Yu W, Zheng G, Li J, Cen S, Ye G, et al. TNF-alpha-mediated m(6)A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun. 2021;12:5373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–8.

    Article  CAS  PubMed  Google Scholar 

  214. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23:812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lou G, Yang Y, Liu F, Ye B, Chen Z, Zheng M, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med. 2017;21:2963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther. 2022;13:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Li YJ, Xu QW, Xu CH, Li WM. MSC promotes the secretion of exosomal miR-34a-5p and improve intestinal barrier function through METTL3-mediated Pre-miR-34A m(6)A modification. Mol Neurobiol. 2022;59:5222–35.

    Article  CAS  PubMed  Google Scholar 

  218. Fang J, Chen Z, Lai X, Yin W, Guo Y, Zhang W, et al. Mesenchymal stem cells-derived HIF-1alpha-overexpressed extracellular vesicles ameliorate hypoxia-induced pancreatic beta cell apoptosis and senescence through activating YTHDF1-mediated protective autophagy. Bioorg Chem. 2022;129:106194.

    Article  CAS  PubMed  Google Scholar 

  219. Liu W, Tang P, Wang J, Ye W, Ge X, Rong Y, et al. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J Pineal Res. 2021;71:e12769.

    Article  CAS  PubMed  Google Scholar 

  220. Wang QS, Xiao RJ, Peng J, Yu ZT, Fu JQ, Xia Y. Bone marrow mesenchymal stem cell-derived exosomal KLF4 alleviated ischemic stroke through inhibiting N6-methyladenosine modification level of Drp1 by Targeting lncRNA-ZFAS1. Mol Neurobiol. 2023;60:3945–62.

    Article  CAS  PubMed  Google Scholar 

  221. Hu Y, Liu H, Xiao X, Yu Q, Deng R, Hua L, et al. Bone marrow mesenchymal stem cell-derived exosomes inhibit triple-negative breast cancer cell stemness and metastasis via an ALKBH5-dependent mechanism. Cancers. 2022;14:6059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang Z, Xie Z, Lin J, Sun Z, Li Z, Yu W, et al. The m6A methyltransferase METTL16 negatively regulates MCP1 expression in mesenchymal stem cells during monocyte recruitment. JCI Insight. 2023;8:e162436.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Khosravi M, Bidmeshkipour A, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors. Immunol Res. 2018;66:207–18.

    Article  CAS  PubMed  Google Scholar 

  224. Rengaraj P, Obrdlik A, Vukic D, Varadarajan NM, Keegan LP, Vanacova S, et al. Interplays of different types of epitranscriptomic mRNA modifications. RNA Biol. 2021;18:19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tzelepis K, Rausch O, Kouzarides T. RNA-modifying enzymes and their function in a chromatin context. Nat Struct Mol Biol. 2019;26:858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chan D, Batista PJ. RNA post-transcriptional modification speaks to chromatin. Nat Genet. 2020;52:868–9.

    Article  CAS  PubMed  Google Scholar 

  227. Li X, Ma S, Deng Y, Yi P, Yu J. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022;21:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liu L, Hu K, Feng J, Wang H, Fu S, Wang B, et al. The oncometabolite R-2-hydroxyglutarate dysregulates the differentiation of human mesenchymal stromal cells via inducing DNA hypermethylation. BMC Cancer. 2021;21:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Larrieu D, Viré E, Robson S, Breusegem SY, Kouzarides T, Jackson SP. Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Sci Signal. 2018;11:eaar5401.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018;9:1700.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Huang T, Guo J, Lv Y, Zheng Y, Feng T, Gao Q, et al. Meclofenamic acid represses spermatogonial proliferation through modulating m(6)A RNA modification. J Anim Sci Biotechnol. 2019;10:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhao T, Wang J, Wu Y, Han L, Chen J, Wei Y, et al. Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury(✩). Environ Pollut. 2021;268:115627.

    Article  CAS  PubMed  Google Scholar 

  233. Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet. 2023. https://doi.org/10.1038/s41576-023-00645-2. Epub ahead of print.

  234. Sun Y, Liu G, Zhang K, Cao Q, Liu T, Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther. 2021;12:561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sohrabi B, Dayeri B, Zahedi E, Khoshbakht S, Nezamabadi Pour N, Ranjbar H, et al. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther. 2022;29:1105–16.

    Article  CAS  PubMed  Google Scholar 

  236. Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci. 2020;16:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Xia Z, Tang M, Ma J, Zhang H, Gimple RC, Prager BC, et al. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res. 2021;49:7361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

This work was supported by National Natural Science Foundation of China (81901006, 82372905), Young Top-notch Talent of Pearl River Talent Plan (0920220228), Guangdong Provincial Science and Technology Project Foundation (2022A0505050038), Scientific Research Talent Cultivation Project of Stomatological Hospital, Southern Medical University (RC202005) and Science Research Cultivation Program of Stomatological Hospital, Southern Medical University (PY2020002).

Author information

Authors and Affiliations

Authors

Contributions

LC, BG. and XZ conceptualized the idea of the review. LC, JZ and YL prepared initial drafts of the manuscript. LC, BG, XZ, YFL, and SS contributed to the writing, graph creation and manuscript improvement. JZ, YL contributed to the creation of graphs, tables. All authors reviewed the manuscript and approved to the final version of this manuscript.

Corresponding authors

Correspondence to Bing Guo, Xinyuan Zhao or Li Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Lu, Y., Lin, Y. et al. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 31, 9–27 (2024). https://doi.org/10.1038/s41418-023-01238-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01238-6

Search

Quick links