Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SCML2 contributes to tumor cell resistance to DNA damage through regulating p53 and CHK1 stability

Abstract

SCML2 has been found to be highly expressed in various tumors. However, the extent to which SCML2 is involved in tumorigenesis and cancer therapy is yet to be fully understood. In this study, we aimed to investigate the relationship between SCML2 and DNA damage response (DDR). Firstly, DNA damage stabilizes SCML2 through CHK1-mediated phosphorylation at Ser570. Functionally, this increased stability of SCML2 enhances resistance to DNA damage agents in p53-positive, p53-mutant, and p53-negative cells. Notably, SCML2 promotes chemoresistance through distinct mechanisms in p53-positive and p53-negative cancer cells. SCML2 binds to the TRAF domain of USP7, and Ser441 is a critical residue for their interaction. In p53-positive cancer cells, SCML2 competes with p53 for USP7 binding and destabilizes p53, which prevents DNA damage-induced p53 overactivation and increases chemoresistance. In p53-mutant or p53-negative cancer cells, SCML2 promotes CHK1 and p21 stability by inhibiting their ubiquitination, thereby enhancing the resistance to DNA damage agents. Interestingly, we found that SCML2A primarily stabilizes CHK1, while SCML2B regulates the stability of p21. Therefore, we have identified SCML2 as a novel regulator of chemotherapy resistance and uncovered a positive feedback loop between SCML2 and CHK1 after DNA damage, which serves to promote the chemoresistance to DNA damage agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SCML2 depletion led to decreased cell survival after DNA damage.
Fig. 2: CHK1 stabilized SCML2 after DNA damage through phosphorylation.
Fig. 3: Ser 441 of SCML2 is the key residue for its interaction with USP7.
Fig. 4: SCML2 prevents p53 overactivation after DNA damage.
Fig. 5: SCML2 prevents DNA damage induced cell death in p53 positive cells.
Fig. 6: SCML2 stabilizes p21 through USP7 mediated deubiquitination.
Fig. 7: SCML2 regulates the stability of CHK1.
Fig. 8: SCML2 is upregulated in p53 negative chemoresistant cancer cells.

Similar content being viewed by others

Data availability

All the uncropped original western blots used in the manuscript were listed in Original Western blot images file in Supplementary materials.

References

  1. Lecona E, Narendra V, Reinberg D. USP7 cooperates with SCML2 to regulate the activity of PRC1. Mol Cell Biol. 2015;35:1157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lecona E, Rojas LA, Bonasio R, Johnston A, Fernandez-Capetillo O, Reinberg D. Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes. PLoS Biol. 2013;11:e1001737.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonasio R, Lecona E, Narendra V, Voigt P, Parisi F, Kluger Y, et al. Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes. Elife. 2014;3:e02637.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, et al. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev Cell. 2015;32:574–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo M, Zhou J, Leu NA, Abreu CM, Wang J, Anguera MC, et al. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet. 2015;11:e1004954.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, et al. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet. 2018;14:e1007233.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, et al. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci. 2018;131:1–12.

  8. Maezawa S, Hasegawa K, Yukawa M, Kubo N, Sakashita A, Alavattam KG, et al. Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. Proc Nat Acad Sci USA. 2018;115:4957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grubach L, Juhl-Christensen C, Rethmeier A, Olesen LH, Aggerholm A, Hokland P, et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur J Haematol. 2008;81:112–22.

    Article  CAS  PubMed  Google Scholar 

  10. Qi L, Wang L, Huang J, Jiang M, Diao H, Zhou H, et al. Activated amelogenin Y-linked (AMELY) regulation and angiogenesis in human hepatocellular carcinoma by biocomputation. Oncol Lett. 2013;5:1075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen S, Gui T, Ma C. Identification of molecular biomarkers for pancreatic cancer with mRMR shortest path method. Oncotarget. 2017;8:41432–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du L, Wang L, Yang H, Duan J, Lai J, Wu W, et al. Sex comb on midleg like-2 accelerates hepatocellular carcinoma cell proliferation and metastasis by activating Wnt/beta-Catenin/EMT signaling. Yonsei Med J. 2021;62:1073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang JJ, Huang H, Xiao MB, Jiang F, Ni WK, Ji YF, et al. Sex comb on midleg like-2 is a novel specific marker for the diagnosis of gastroenteropancreatic neuroendocrine tumors. Exp Ther Med. 2017;14:1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan T, Jiang G, Shi R, Yu R, Xiao X, Ke D. Construction of AP003469.4-miRNAs-mRNAs ceRNA network to reveal potential biomarkers for hepatocellular carcinoma. Am J Cancer Res. 2022;12:1484–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vousden KH, Prives C. Blinded by the Light: The growing complexity of p53. Cell. 2009;137:413–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34.

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002;416:648–53.

    Article  CAS  PubMed  Google Scholar 

  19. Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature. 2004;428:1–2.

  20. Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell cycle. 2005;4:1166–70.

    Article  CAS  PubMed  Google Scholar 

  21. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell. 2007;12:342–54.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez J, Herrero A, Li S, Rauch N, Quintanilla A, Wynne K, et al. PHD3 regulates p53 protein stability by hydroxylating proline 359. Cell Rep. 2018;24:1316–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui D, Xiong X, Shu J, Dai X, Sun Y, Zhao Y. FBXW7 confers radiation survival by targeting p53 for degradation. Cell Rep. 2020;30:497–509.e494.

    Article  CAS  PubMed  Google Scholar 

  24. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1:1001–8.

    CAS  PubMed  Google Scholar 

  25. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Molecular cell. 2004;13:879–86.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Molecular cell. 2006;21:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brooks CL, Li M, Hu M, Shi Y, Gu W. The p53-Mdm2-HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene. 2007;26:7262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JT, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 2010;17:86–92.

    Article  CAS  PubMed  Google Scholar 

  30. Kategaya L, Di Lello P, Rouge L, Pastor R, Clark KR, Drummond J, et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature. 2017;550:534–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Zhang Y, Wang T, Zhang J, Zhou Z, Sun Y, et al. The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status. Cell Physiol Biochem. 2017;43:1755–66.

    Article  PubMed  Google Scholar 

  32. Song MS, Song SJ, Kim SY, Oh HJ, Lim DS. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008;27:1863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Epping MT, Meijer LA, Krijgsman O, Bos JL, Pandolfi PP, Bernards R. TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nat Cell Biol. 2011;13:102–8.

    Article  CAS  PubMed  Google Scholar 

  34. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 2005;18:25–36.

    Article  CAS  PubMed  Google Scholar 

  35. Tsabar M, Mock CS, Venkatachalam V, Reyes J, Karhohs KW, Oliver TG, et al. A switch in p53 dynamics marks cells that escape from DSB-induced cell cycle arrest. Cell Rep. 2020;32:107995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Porter JR, Fisher BE, Batchelor E. p53 pulses diversify target gene expression dynamics in an mRNA half-life-dependent manner and delineate co-regulated target gene subnetworks. Cell Syst. 2016;2:272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G. Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell. 2016;165:631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Georgakilas AG, Martin OA, Bonner WM. p21: A two-faced genome guardian. Trends Mol Med. 2017;23:310–9.

    Article  CAS  PubMed  Google Scholar 

  39. Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016;18:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neizer-Ashun F, Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett. 2021;497:202–11.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer. 2014;134:1013–23.

    Article  CAS  PubMed  Google Scholar 

  43. Kim ST, Lim DS, Canman CE, Kastan MB. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999;274:37538–43.

    Article  CAS  PubMed  Google Scholar 

  44. O’Neill T, Dwyer AJ, Ziv Y, Chan DW, Lees-Miller SP, Abraham RH, et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem. 2000;275:22719–27.

    Article  PubMed  Google Scholar 

  45. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 2001;21:4129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 is a master regulator of genome stability. Front Cell Dev Biol. 2020;8:717.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 2006;13:285–91.

    Article  CAS  PubMed  Google Scholar 

  49. Choi ES, Lee H, Sung JY, Lee CH, Jang H, Kim KT, et al. FAM188B enhances cell survival via interaction with USP7. Cell Death Dis. 2018;9:633.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shen Y, Tu W, Liu Y, Yang X, Dong Q, Yang B, et al. TSPY1 suppresses USP7-mediated p53 function and promotes spermatogonial proliferation. Cell Death Dis. 2018;9:542.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem. 2004;279:16000–6.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang YW, Brognard J, Coughlin C, You Z, Dolled-Filhart M, Aslanian A, et al. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 2009;35:442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saldivar JC, Hamperl S, Bocek MJ, Chung M, Bass TE, Cisneros-Soberanis F, et al. An intrinsic S/G2 checkpoint enforced by ATR. Science. 2018;361:806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leung-Pineda V, Huh J, Piwnica-Worms H. DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res. 2009;69:2630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alonso-de Vega I, Martin Y, Smits VA. USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle. 2014;13:3921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14:1448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huh J, Piwnica-Worms H. CRL4(CDT2) targets CHK1 for PCNA-independent destruction. Mol Cell Biol. 2013;33:213–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2:103–12.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O’Connor PM. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst. 1996;88:956–65.

    Article  CAS  PubMed  Google Scholar 

  62. Ma CX, Janetka JW, Piwnica-Worms H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011;17:88–96.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nature Cell Biology. 2014;16:864–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang S, Zhao Y, Aguilar A, Bernard D, Yang CY. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb Perspect Med. 2017;7:1–10.

  65. Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013;493:561–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

QC is supported by grants from the National Key Research and Development Program of China (2018YFC1003400), the National Natural Science Foundation of China (32170698, 31770868) and the Fundamental Research Funds for the Central Universities (2042022dx0003).

Author information

Authors and Affiliations

Authors

Contributions

QC designed and supervised the study. Q-QP studied the regulation between SCML2 and CHK1. XS constructed all the cell lines and analyzed the regulation between SCML2, USP7 and p21. Q-QP and XS jointly performed the remaining experiments. D-WL performed MST assay. JG and X-QZ generated constructs and purified proteins. QC, XS, X-YZ and Q-QP wrote the manuscript.

Corresponding author

Correspondence to Qiang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Shi, X., Li, D. et al. SCML2 contributes to tumor cell resistance to DNA damage through regulating p53 and CHK1 stability. Cell Death Differ 30, 1849–1867 (2023). https://doi.org/10.1038/s41418-023-01184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01184-3

Search

Quick links