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While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors
respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard
and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive
cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These
technologies have allowed the discovery of T cells’ negative regulators such as specific cell-surface receptors, cell-signaling proteins,
and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic
invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional
T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of
recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells’ antitumor
capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant
advancement in the pursuit of superior adoptive cell therapy.

Cancer Gene Therapy; https://doi.org/10.1038/s41417-024-00771-x

BACKGROUND
Immune surveillance constitutes a powerful defense mechanism
thwarting the development of cancer. Orchestrated by the
coordinated actions of cells and active molecules originating
from both the innate and adaptive immune systems, this
surveillance mechanism detects and eliminates emerging malig-
nant cells. However, a dynamic equilibrium between immune and
transformed cells may emerge, enabling tumor cells to resist
immune pressure and eventually evade elimination. This has been
theorized and enunciated by the immunoediting theory [1].
Among the immune cells engaged in tumor control, T cells have

emerged as pivotal actors in the eradication of cancer cells, owing
to their antitumor capacities [2]. A groundbreaking strategy
emerged in the 1990s with the evolution of T cell engineering,
enabling cells to express receptors specifically targeting tumor
antigens such as transgenic T cell receptors (tgTCR) or chimeric
antigen receptors (CAR) [2]. Even though both types of receptors
have shown promise, CAR-T therapy has emerged as the most
advanced therapeutic strategy, particularly in refractory and
relapsed hematologic malignancies, while tgTCR-T therapy has
shown encouraging outcomes in solid tumors and offers a
broader target repertoire [3, 4]. Progress in CAR-T therapy has
led to the approval by health regulatory agencies of six
medications for the treatment of B cell acute lymphoblastic
leukemia, several lymphomas as well as multiple myeloma [5, 6].
However, despite the encouraging clinical efficacies that have
been reported, a substantial number of patients either do not
respond to the therapy or have relapses, and the treatment of
solid tumors remains challenging [6, 7].

Numerous obstacles that limit the sustainable efficacy of
engineered T cells have been identified so far. Hence, the
emergence of resistant tumor cells, the poor infiltration of effector
cells, as well as the limited persistence and lack of effector
functions pose new challenges in the realm of adoptive cell
therapy based on engineered T cells [4, 8]. Among these
challenges, significant efforts have been directed towards mitigat-
ing the functional decline of T cells, taking into account the hostile
tumor microenvironment that impedes their full potential [9].
Recently, advances in molecular engineering and immunology

have facilitated the identification of relevant targets for genetic
invalidation, leading to the development of next-generation
engineered T cells [8, 10, 11]. To achieve this, the Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas
approach, widely used in the last few years, has shown remarkable
results in the field of cancer immunotherapy by improving T cell
functions through the direct targeting of negative regulators [8].
This review delves into the induction of T cell dysfunction

before examining how CRISPR-Cas genetic invalidation of genes
involved in the induction or maintenance of T cell dysfunction can
be harnessed to strengthen engineered T cell therapy.

INDUCTION OF T CELL DYSFUNCTION
During chronic infections and cancer, T cell functions become
compromised [12]. This disablement arises from persistent
exposure to antigens and the immunosuppressive tumor
microenvironment, gradually resulting in the attenuation of
T cells’ effector capacities (Fig. 1) [11, 13–15].
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The prolonged overstimulation leads to a significant impair-
ment of T cell functions, as elucidated in numerous studies
published in the early 2000s. These investigations have under-
scored a direct correlation between the extent of antigen
stimulation and the severity of dysfunction, thus proving
that such stimulation alone is adequate to precipitate the decline
in effector capacities of CD8+ T cells [16]. Furthermore, within the
hostile tumor microenvironment, various factors contribute to the
development of dysfunctional T cells. For instance, essential
nutrients such as glucose and amino acids become depleted. This
competition between tumor cells and T cells arises from the
reliance of cancer cells on glycolysis for energy production.
Through this metabolic pathway, cancer cells increase lactic acid
and CO2 production, directly impacting the survival and functions
of effector T cells [17]. Consequently, the tumor’s metabolic
activity generates an acidic and hypoxic environment, detrimen-
tally affecting antitumor effector T cell activity. This is notably
achieved by inhibiting the PI3K/Akt/mTOR pathway and fostering
the differentiation of regulatory T cells (Tregs) [17, 18]. These
disruptions lead to the accumulation of immunosuppressive
metabolites, including kynurenine, adenosine and reactive oxygen
species (ROS), known to significantly inhibit T cell function [19–21].
Moreover, enzymes such as indoleamine 2,3-dioxygenase (IDO),
whose level is elevated in patients with poor prognosis, and
ectonucleotidases CD39 and CD73, are upregulated during this
process, contributing to increased levels of kynurenine and
adenosine respectively [20, 22, 23]. Dysfunction is further
exacerbated by the presence of immunosuppressive cells and
their associated cytokines that actively participate in repressing
T cells [9, 11]. Indeed, tumor cells possess the ability to recruit
supportive cells such as cancer-associated fibroblasts (CAF),
tumor-associated macrophages (TAM), myeloid-derived suppres-
sor cells (MDSC), or Tregs to promote their progression. Through
their intrinsic properties, immunosuppressive cells closely colla-
borate to drive T cell dysfunction [9, 11]. Furthermore, other

immune cells originally involved in cancer cell clearance, such as
antigen-presenting cells or natural killer cells, also indirectly
contribute to the development of dysfunctional T cells by
fostering an inflammatory environment or deviating from their
initial functions [24].

CONSEQUENCES OF DYSFUNCTION IN T CELL ABILITIES
The state of dysfunction is characterized functionally and
phenotypically by a progressive loss of effector functions,
increased and sustained expression of inhibitory receptors,
modification of metabolic programming, and an altered transcrip-
tional and epigenetic landscapes (Fig. 2) [11, 25].
In the initial phase, interleukin (IL)-2 production is altered,

gradually followed by reduced tumor necrosis factor (TNF)-α and
interferon (IFN)-γ expression [26]. This reduction in the secretion of
pro-inflammatory cytokines drastically alters T cell functions,
leading to reduced cytotoxic and proliferative abilities [26].
Simultaneously, inhibitory receptors, initially serving as immune
checkpoints to prevent overactivation, become more prominently
expressed on the cell surface [27–29]. Consequently, T cell
cytotoxic activity decreases as inhibitory signals are mediated
through various molecular pathways (reviewed by Catakovic et al.)
[15, 28]. Moreover, defective mitochondrial functions, stemming
from altered mitochondrial biogenesis and mitochondrial mem-
brane depolarization, enhance aberrant ROS production and
decrease oxidative phosphorylation, impairing T cell metabolic
fitness [30]. Recent data has also confirmed that the transcrip-
tomic and epigenetic landscapes of dysfunctional T cells differ
from those of effector and memory T cells [31]. This distinction
could be attributed to the collaboration of transcription factor
members of the TOX and NR4A families, which notably impose T
cell dysfunction by driving epigenetic programming [32, 33].
To enhance the capacities of engineered T cells and overcome

their limitations, various approaches have emerged and are

Fig. 1 Drivers of T cell dysfunction. Chronic antigen exposure and the immunosuppressive tumor microenvironment can impair T cell
effector functions. By inducing tough inhibition of T cells’ antitumor capacities through interactions with various immune cells and molecules,
as well as modulating the overall environment, tumor cells can evade T cell immunosurveillance, ultimately leading to the failure of adoptive
cell therapy. CAF, cancer-associated fibroblasts; CAR, chimeric antigen receptor; TAM, tumor-associated macrophages; Treg, regulatory T cells;
MDSC, myeloid-derived suppressor cells.
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actively under investigation [34]. For instance, numerous studies
have focused on ex vivo CAR-T manufacturing, with efforts
concentrated on CAR constructs, cell culture conditions, as well
as cell sources [8, 35–38]. Furthermore, the combination of
immune checkpoint blockade with CAR-T cells has shown
interesting results [39]. Similarly, genome editing has emerged
as a highly promising tool in recent years for enhancing
polyvalence and antitumor efficacy of CAR-T cells [8, 11, 38].

CRISPR-CAS GENOME EDITING TOOL
Recent advancements in biotechnology have introduced innova-
tive tools such as meganucleases, zinc finger nucleases, transcrip-
tion activator-like effector nucleases (TALEN) or CRISPR-Cas,
offering the potential to address, prevent, or mitigate some of
the prevailing limitations of next-generation engineered T cells
[40–42]. Among the various genome editing tools available, TALEN
and CRISPR-Cas methods have demonstrated significant potential
in silencing unwanted gene expression, but the CRISPR-Cas
method has emerged as the most widely used strategy for
genome editing, owing to its precision, flexibility, and simplicity to

implement [43–45]. This technology has notably already demon-
strated promising results in completed clinical trials [46, 47].
Facilitated by a guide RNA (gRNA) and the Cas endonuclease,

the CRISPR-Cas system precisely cuts a specific gene to induce
double-stranded cuts [48]. Following this phenomenon, natural
error-prone non-homologous end joining (NHEJ) or homologous-
directed repair (HDR) mechanisms initiate gene repair [49]. The
mutagenic behavior of NHEJ can lead to deletions and insertions,
resulting in the emergence of premature STOP codons or a shift in
the reading frame causing the invalidation of the gene [50].
Additionally, the HDR mechanism may take place when a
homologous repair DNA template is introduced (Fig. 3) [51].
Various Cas proteins have been identified for CRISPR-Cas based

gene editing. Among them, Cas9 has been extensively studied
and employed for its high efficiency in genome editing. However,
other proteins like Cas12a, Cas13 and Cas14, have been explored
as promising alternatives, as reviewed by Hillary et al. [52].
Additionally, apart from the usual double-stranded cuts induced
by Cas proteins to invalidate a gene, various other innovative
CRISPR-Cas approaches have also been developed. One such
approach involves the use of a dead Cas (dCas) protein, a mutated
Cas which can be paired with a repressor protein, which induces
CRISPR interference when the gRNA is fixed to the desired gene.
Another approach is the utilization of nickase Cas (nCas) proteins,
where one of the two catalytic Cas sites is inactivated, enabling
more precise gene disruption by targeting two sites on either side
of the target gene. Furthermore, when nCas proteins are linked to
specific enzymes, they can be used for base or prime editing [51].
Thus, the CRISPR-Cas tool can be harnessed to target and

invalidate negative regulators of T cells’ functions involved in the
development and/or maintenance of their dysfunctional state
[37, 38]. However, identifying compelling targets to optimize
engineered T cells remains quite challenging. In pursuit of this
goal, two distinct strategies have emerged.

KNOWLEDGE-BASED APPROACH
Transcriptome profiling methods have revolutionized research by
providing deeper insights into complex biological phenomena
[53]. Utilizing patient-derived T cells in transcriptomic studies has
emerged as the strategy of choice to unravel the intricacies of T
cell dysfunction. By combining this technology with immunolo-
gical knowledge, a “good guess” approach has been used to
identify new potential targets for optimizing engineered T cells
(Table 1).
Several research teams have demonstrated the efficacy of this

approach by targeting suppressive molecules directly contributing
to T cell functional loss. Their investigations have highlighted cell
surface proteins such as immune checkpoints (PD-1, LAG-3) or

Fig. 2 T cells’ loss of function. Dysfunctional T cells exhibit
alterations in epigenetic, metabolic, and transcriptomic programs,
resulting in a sustained upregulation of inhibitory receptors, a lack
of cytokine secretion, as well as a decrease in degranulation and cell
proliferation capacity. FAO, fatty acid β-oxidation; OXPHOS, mito-
chondrial oxidative phosphorylation; ROS, reactive oxygen species.

Fig. 3 CRISPR-Cas principle. The CRISPR-Cas tool is a technology that is capable of inducing targeted gene knockouts through the assistance
of an endonuclease coupled with a specific guide RNA complementary to the gene requiring editing. This approach activates natural DNA
repair mechanisms, often resulting in complete gene silencing.
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receptors (A2AR, FAS, TGF-β receptor II) as attractive targets to
improve T cell functions, with their deletion boosting the efficacy
of engineered T cells in both hematologic and solid tumor models.
These knockouts notably allowed the increase of T cell functions
by decreasing the expression of inhibitory receptors, and
enhancing the secretion of Granzyme B, IFN-γ and TNF-α, which
allowed better tumor control [46, 54–60]. Expanding beyond cell
surface targets, teams have explored intracellular targets impli-
cated in T cell regulation, such as transcription factors [61–65]. For
instance, Jung et al. utilized single-cell RNA-sequencing on
autologous CAR-T infusion products administered to patients,
and they identified an inverse correlation between PRDM1 and
TCF7 gene expression [65]. Subsequent validation in chronic
lymphocytic leukemia patients treated with CD19-CAR-T therapy
confirmed elevated PRDM1 gene expression in non-responders
and higher TCF7 gene expression in responders. Finally, they
proved that knocking-out PRDM1 resulted in CAR-T cells main-
taining an early memory phenotype and enhanced cytotoxicity,
although sustained improvement over time was not observed
[65]. Yoshikawa et al., had previously observed that PRDM1-edited
CAR-T cells expressed more TOX and exhibited comparable
expression of inhibitory receptors compared to unedited CAR-T
cells [64]. This observation has also been confirmed by Jung’s
team, who performed bulk RNA-Sequencing and identified an
upregulation of exhaustion-characterized transcription factors
such as NR4A and TOX members in chronically stimulated human
CAR-T cells as well as mouse tumor infiltrating T cells (TILs) [65].
Building upon these findings, the team performed a double-
knockout of PRDM1 and NR4A3 genes, thereby improving CAR-T
effector functions in both solid and liquid tumor models, even
after tumor rechallenge [65]. Similarly, Zhang et al. conducted an
in-depth analysis of exhaustion-related gene expression in
patients suffering from liver, colorectal and non-small cell lung
cancer (NSCLC). By aligning this data with genes upregulated in
their in vitro exhaustion model, they underscored the potential of
targeting a specific transcription factor, BATF, to reinforce T cells
against dysfunction. This approach not only heightened resistance
to dysfunction but also amplified tumor clearance efficacy by
increasing the central memory T cell subset [61]. These investiga-
tions have also piqued the interest of other research teams,
leading them to target genes such as ID3, IKZF3, TOX1/2, or SOX4
[32, 62, 63]. The ID3 and SOX4 genes have notably been shown to
be co-expressed with other dysfunction signature genes and their
knockouts significantly improved the potency of CAR-T cells in
killing targeted tumor cells, while TOX double knockouts showed
decreased expression of NR4A1/2 and multiple inhibitory receptors
genes such as PDCD1, HAVCR2 and LAG3, as well as increased
expression of granzymes in T cells [32, 62, 63]. The double
knockout of NR4A1/2 also showed improved antitumor immunity
by increasing TCF1+ stem-like precursors of exhausted CD8+

T cells, as well as enhanced persistence in the tumor microenvir-
onment [66]. Additionally, scrutiny has also extended to proteins
involved in T cell signaling, thus unveiling promising candidates
such as DGK, DNMT3A, as well as SUV39H1 to optimize engineered
T cells [62, 67–69]. For instance, DGK targeting has been shown to
amplify T cell effector capacities by improving their proliferation
and expression of effector cytokines, like IL-2 and IFN-γ, even
following repeated exposure to tumor stimuli [67]. Similarly,
targeting epigenetic proteins, such as DNMT3A and SUV39H1, has
proven effective in preserving a memory-like phenotype,
evidenced by the expression of CD62L and improvements in
metabolic fitness. These cells also demonstrated prolonged and
enhanced control over tumor progression, even upon subsequent
tumor rechallenges [68, 69]. The knockout of some other genes,
like PTP1B and PTPN2, has also demonstrated its potential in
murine models to enhance T cell functions by exhibiting higher
capacities of eliminating tumor cells. Both these knockouts
increased not just the capacity of CAR-T cells in killing their

tumor target, but also their antigen-specific activation notably by
enhancing STAT5 signaling [70, 71]. Overall, edited CAR- and
tgTCR-T cells in these studies exhibited increased effector
cytokines, heightened proliferative and cytotoxic capacities, and
diminished exhaustion markers. Some investigations even sug-
gested potential enhancements in metabolic fitness.

CRISPR SCREENING
In recent times, the utilization of CRISPR screens has witnessed a
notable surge as a potent strategy for identifying target genes
deemed worthy of knockout, thereby enabling large-scale genetic
loss-of-function experiments [72]. This technique can be executed
through either pooled or arrayed CRISPR screens [73]. In the
former, a library of CRISPR gRNAs is introduced into a population
of Cas9-expressing cells, each affected based on the gRNAs. In the
latter, the cells are individually distributed into wells, allowing
distinct gene perturbations to be discerned. After a period of
cultivation to select surviving cells, edited T cells can be chosen
based on the analysis of specific biomarkers or subsequent to a
challenge. This challenge may involve drug treatment, virus
infection, metabolic stresses, or in vitro/in vivo exhaustion
protocols [72, 73]. Subsequently, the heterogeneous population
of edited T cells undergoes next-generation sequencing, unveiling
a comprehensive landscape of sequence expression. Finally,
specific gRNAs are selected to deplete identified genes, whose
inhibition confers a beneficial advantage.
This screening strategy has been extensively employed to

unravel T cell biology and unearth potential targets (Table 2).
Genes such as ARID1A, CBL-B, CUL5, DAP5, DHX37, FLI1, IKZF2,

IRF2, RGS16, SOCS1, TCEB2, and TLE4 have been identified as
functional regulators of T cells, presenting intriguing knockout
targets to optimize T cell immunotherapies [74–83]. For instance,
Freitas and colleagues identified CCNC and MED12 genes as
promising targets using chronic antigen exposure models. The
specific deletion of these genes in human CAR-T cells improved
their proliferative, cytokine secretion, and cytotoxic capacities.
Moreover, they showed that MED12-disrupted CAR-T cells had
sustained effector functions even upon chronic stimulation with a
higher secretion of IL-2 and IFN-γ, a lower expression of CD39, as
well as better tumor growth control. Improved antitumor
responses have also been observed using a NY-ESO-1-tgTCR
against NY-ESO-1+ melanoma cells [80]. Another example is
Carnevale and colleagues who proved that RASA2-edited NY-ESO-
1-specific TCR T cells as well as CD19- and EphA2-edited CAR-
T cells displayed enhanced in vivo antitumor capabilities across
hematologic and solid tumor models, indicating improved control
of tumor growth and increased survival in mice [84]. Another
significant discovery was the identification of the gene SNX9, by
Trefni et al. through CRISPR screening [85]. Their research revealed
that SNX9 was co-expressed with TIM-3 among PD-1 positive TILs
of patients suffering from NSCLC, and it was also highly expressed
in TILs of melanoma patients with poor responses to immune
checkpoint blockade therapy. By mediating CRISPR knockout of
SNX9, the team demonstrated enhanced antitumor efficacy of NY-
ESO-1-directed TCR T cells in an in vitro exhaustion model, with
the enhancement being characterized by an increase in cytokine
production and the level of CCR7 memory marker, as well as a
decrease in the levels of TOX and NR4A1/3 transcription factors
[85]. The efficacy of this approach was also evident in a CD19-CAR-
T model, displaying prolonged control of tumor volume, elevated
IFN-γ expression, and reduced levels of the immunosuppressive
cytokine IL-10 [85]. In addition, Wei and colleagues identified
REGNASE-1 as a potential target due to its heightened expression
in TILs, and its deletion improved adoptive cell transfer against
both solid and liquid tumors by promoting the development of
long-lived effector phenotypes [86]. Collectively, these findings
underscore the burgeoning significance of CRISPR screening as a
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potent tool for identifying novel key regulators of T cell functions.
These findings suggest that CRISPR screening can be employed to
edit and optimize CAR- and tgTCR-T cells, thereby enhancing the
efficacy of adoptive cell therapy.

TARGETS AND READOUTS
CRISPR-Cas, owing to its precise mode of action, offers a targeted
modality for editing cells, focusing on membrane-bound or
intracellular drivers that naturally regulate T cell effector functions.
This intricate targeting activates complex biological signaling
pathways crucial for effective antitumor immunity, presenting a
promising avenue for optimizing engineered T cells (Fig. 4).
Within the spectrum of potential targets, specific cell surface

receptors, acting as primary conduits for inhibitory signals, can be
strategically deleted to mitigate the negative impacts induced by
interactions with their ligands. In this context, the adenosine
receptor A2AR, the TGF-β receptor II, as well as the death receptor
FAS, can be effectively switched off through genic invalidation to
prevent unfavorable outcomes associated with the fixation of their
respective ligands [54, 56–59, 87].
Additionally, various cell-signaling proteins essential for cellular

communication and specific responses, have also been targeted.
Proteins such as E3 ubiquitin ligase CBL-B, crucial for post-
translational modification, and RASA2, a Ras GTPase-activating
protein, play pivotal roles in fundamental cellular processes
[84, 88]. Moreover, epigenetic targets, including DNMT3A or
ARID1A, have demonstrated significant potential in improving T
cell functions, particularly considering the observed epigenetic
changes during the development of dysfunctional T cells
[68, 82, 89].
Furthermore, transcription factors, with their versatility in

regulating multiple genes based on environmental cues, have
become focal points for optimizing T cell function. For instance,
PRDM1 has been shown, through various studies, to be implicated
in T cell differentiation and exhaustion [64, 65]. However, as
transcription factors possess the ability to specifically regulate

gene expression, their impact can lead to different outcomes as
exemplified by the contrasting effects of the BATF and IRF4 genes
in terms of their antitumoral activities, depending on the
experimental models employed [61, 90].
The selection of an ideal candidate for knockout involves a

meticulous analysis of various readouts to gauge its impact on T
cell survival, proliferation, fitness, and overall functionality.
Parameters such as cell survival, memory phenotype, expression
of activation and inhibitory molecules, proliferation ability,
cytokine expression, as well as cytotoxic capacities are assessed
in vitro or in vivo [57, 61, 63–65, 68, 85, 86]. Additionally,
transcriptomic analysis is often employed for a comprehensive
screening of genes reprogrammed after CRISPR editing, leading to
further investigations providing insights into cell phenotype, as
well as metabolic and epigenetic profiles [68, 80, 84].

DISCUSSION AND CONCLUSION
Engineered T cells have demonstrated success in eliciting
antitumor immune responses [4, 11]. However, the rise of
dysfunctional T cells poses a significant hurdle, leading to patient
relapse [4, 15]. To address this major limitation, the evaluation of
next-generation engineered T cells using CRISPR-Cas tool is
ongoing in various studies [45]. However, selecting relevant genes
for deletion poses a challenge, given the extent of their impact on
cellular biology. Consequently, substantial efforts have been
invested in developing new strategies to identify undesirable
genes for knockout, with the aim of optimizing T cell performance.
While the knowledge-based approach laid the foundation for

understanding T cell dysfunction, CRISPR screening has signifi-
cantly broadened the scope. The comprehensive insights gained
from this screening offer a nuanced understanding of gene
functions, allowing researchers to pinpoint specific targets tailored
for clinical applications. The selection process of a relevant target
involves a deep evaluation of several factors to assess the impact
of these genes on T cell survival, proliferation, and overall fitness.
Transcriptomic analysis additionally provides valuable insights into

Table 2. CRISPR screening targets model’s summary.

Protein type Target Method for
gene knockout

Transgene Tumor model Assay Impact Ref

Cell-signaling
protein

CCNC Viral CD19-CAR Liquid tumor (NALM-6) In vitro
In vivo

Effector function [80]

HA-28z-CAR Liquid tumor (GD2+NALM6)

HER32-CAR Solid tumor (143B)

CUL5 CD19-CAR Liquid tumor (NALM-6) In vitro [81]

MED12 CD19-CAR Liquid tumor (NALM-6) In vitro
In vivo

[80]

HA-28z-CAR Liquid tumor (GD2+NALM6)

HER32-CAR Solid tumor (143B)

NY-ESO-1-
tgTCR

Solid tumor (A375)

RASA2 CD19-CAR Liquid tumor (NALM-6) and
solid tumor (CD19+A375)

Effector function
and persistence

[84]

EphA2-CAR Solid tumor (LM7) In vivo

NY-ESO-1-
tgTCR

Liquid tumor (NY-ESO-
1+NALM6 and T2) and solid
tumor (A375)

In vitro
In vivo

SNX9 CD19-CAR Liquid tumor (Raji) In vivo [85]

NY-ESO-1-
tgTCR

Liquid tumor (T2) In vitro

Transcription
factor

IKZF2 IL-13Rα2-CAR Solid tumor (IDH1/2) In vitro
In vivo

Effector function [79]

HER32-CAR

TLE4 IL-13Rα2-CAR
HER32-CAR
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the post-CRISPR editing reprogramming of genes. This approach
notably led to the understanding of T cell fate in cancer, which is
crucial for the identification of reprogrammable determinants for
cancer immunity [91]. For instance, Wu et al. identified BHLHE40
as a key differentiation checkpoint between the subsets of
exhausted T cells by using in vitro chronic stimulation model,
while Zhou’s team highlighted the gene regulatory network
implicated in the effector function capacities of exhausted T cells
through in vivo single-cell CRISPR screens [91, 92].
Nonetheless, due to the diversity of the readouts used,

interstudy analyses are not relevant. In addition, even though
some genes highlighted in CRISPR screens, such as CBL-B, TCEB2,
or RASA2, have also been independently corroborated by prior
research using knowledge-based or screening approaches,
thereby showcasing the reliability of CRISPR screens, discrepancy
remains in the identification of interesting targets to knockout
[78, 84, 93]. This can be due to the different screening models
used, and also the tumor antigen targeted, as this would
significantly affect the induction of T cell dysfunction. Hence,
due to the tumor microenvironment and the expression profile of
the antigen being variable according to the therapeutic indica-
tions, it might be interesting to compare the different knockouts
in the different conditions to potentially find the best targets to
improve T cell functions. As an example, Larson’s team identified
the IFN-γ receptor pathway affecting the sensitivity of solid tumor
cells, but not liquid tumor cells, to CAR-T cells [94]. Finally, apart
from finding the best genes to knockout, the design of the CAR
might also be taken into consideration, as this would significantly
affect T cell susceptibility of dysfunction. For instance, it has been
shown that CAR-T containing 4-1BB costimulation domain were a
better option to prevent exhaustion domain, but they were less
efficient than CAR-T containing CD28 to target tumor expressing
few antigens [95]. Hence, there is no one-size-fits-all response
regarding the choice of the targets to knockout.
In the realm of the clinical application for CRISPR-Cas targets,

the prospect is promising, as evidenced by the success of CRISPR-
Cas in pre-clinical studies and ongoing clinical trials (Tables 1 to 3)
[45].

Studies concerning the therapeutic applications of CRISPR-
engineered T cells primarily aim to facilitate allogeneic transfer
and prevent fratricide of CAR-T cells by targeting TCR, MHC-I,
MHC-II, or proteins like CD70. Some investigations have chosen to
focus on alternative proteins such as PD-1, TGF-β receptor II, and
Regnase-1 to reinvigorate T cells, counteract tumor microenviron-
ment suppression, and enhance cell proliferation [96]. For
instance, Lu and colleagues conducted a trial (NCT02793856)
demonstrating the safety and feasibility of PD-1 knockout in T cells
from metastatic NSCLC patients. In their study, adverse events
were limited to grade I or II, and edited-T cells were detectable
post-infusion [47]. Similarly, Carl June’s team demonstrated the
feasibility of this approach in a trial (NCT03399448) involving
patients with advanced refractory myeloma and metastatic
sarcoma, with durable and well-tolerated engraftment being
observed [46].
However, while the CRISPR-Cas system serves as a potent tool to

make precise modifications to the genome, it is not always error-
free [97, 98]. CRISPR-Cas systems may edit genomic sequences
similar to the targeted gene, leading to unintended DNA cleavage
at off-target locations [99]. As a result, chromosomal aberrations or
unintended generation of structural variants might be safety
concerns when developing CRISPR-Cas editing [100, 101]. To
overcome this phenomenon, CRISPR-base and CRISPR-prime
editing could serve as interesting alternatives, as they can induce
point mutations without a double-strand DNA break [102].
Moreover, the implementation of rigorous quality control should
always be assessed to evaluate the safety of the CRISPR-products.
Furthermore, beyond safety concerns, CRISPR-Cas technology also
encounters other challenges affecting its effectiveness, such as
optimizing gRNA specificity and stability, enhancing Cas protein
efficiency, refining delivery methods, addressing cell proliferation,
and considering genomic context [103]. However, despite taking
these parameters into consideration, achieving a near-perfect
knockout is often unattainable, resulting in a heterogeneity of
edited cells. This variability, along with the occurrence of
monoallelic and biallelic CRISPR modifications, may impact
knockout effectiveness. Consequently, the acceptable proportion

Fig. 4 Summary of CRISPR-Cas targeted genes and readouts used to improve T cell effector functions in the field of cancer immunotherapy.
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of edited cells may vary on the therapeutic applications, and may
require cell sorting as is the case in allogeneic settings [104].
Although this review has primarily focused on the tumor

microenvironment, it is essential to recognize that various other
mechanisms also limit the full potential of engineered T cells. These
include obstacles such as compromised cell infiltration into tumors,
antigen heterogeneity, evasion of tumor targets, poor persistence or
fratricide of engineered T cells, allogeneic rejection, and associated
toxicities [103]. In this context, CRISPR-Cas has demonstrated and
may continue to demonstrate additional potential. As an example,
to improve the persistence of engineered T cells, transgenic cytokine
expression has emerged as an intriguing strategy, as a few of
cytokines have been shown to be beneficial in promoting their
expansion and persistence capacities [105]. It has been observed in
various studies that the induction of not only IL-7 and CCL19, but
also IL-15 and IL-21 inductions enhanced the survival and effector
functions of CAR-T cells [106, 107]. Hence, it could be of interest to
validate this approach by employing the CRISPR-Cas tool to optimize
engineered T cells. Moreover, in the effort to enhance T cell
trafficking into tumors, some researchers have developed T cells
expressing chemokine receptors of interest [108]. Several teams
have already shown the potential of this approach by notably
integrating various receptors such as CXCR1/2/4/6, CCR2/4/8 and
CX3CR1 through viral transduction, as summarized in the review of
Foeng et al. [108]. Besides, Marson’s team also showed the
possibility of this approach by incorporating CXCR4 receptors into
T cells using the CRISPR-Cas system [109]. Moreover, on account of
all genetic modifications that might be performed on T cells,
induced pluripotent stem cells approach could be an interesting
alternative as it allows us to perform multiple modifications and
selections at the same time, while preserving similar therapeutic
outcomes to primary T cells approach [110, 111].
In summary, thanks to its numerous benefits and possibility of

improvement, the CRISPR-Cas system is definitively a promising
tool for optimizing and developing the next-generation of
engineered T cells.
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