Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy

Abstract

While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells’ negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells’ antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drivers of T cell dysfunction.
Fig. 2: T cells’ loss of function.
Fig. 3: CRISPR-Cas principle.
Fig. 4

Similar content being viewed by others

References

  1. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48.

    Article  CAS  PubMed  Google Scholar 

  2. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:1–18.

    Article  Google Scholar 

  3. Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv. 2023;9:eadf3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol. 2021;14:199.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodrigo S, Senasinghe K, Quazi S. Molecular and therapeutic effect of CRISPR in treating cancer. Med Oncol. 2023;40:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tomasik J, Jasiński M, Basak GW. Next generations of CAR-T cells - new therapeutic opportunities in hematology? Front Immunol. 2022;13:1034707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu X, Li Q, Zhu X. Mechanisms of CAR T cell exhaustion and current counteraction strategies. Front Cell Dev Biol. 2022;10:1034257.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ren P, Zhang C, Li W, Wang X, Liang A, Yang G, et al. CAR-T therapy in clinical practice: technical advances and current challenges. Adv Biol (Weinh). 2022;6:e2101262.

    Article  PubMed  Google Scholar 

  9. Verma NK, Wong BHS, Poh ZS, Udayakumar A, Verma R, Goh RKJ, et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine. 2022;83:104216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-Generation CAR T-cell therapies. Cancer Discov. 2022;12:1625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen C, Zhang Z, Zhang Y. Chimeric antigen receptor T cell exhaustion during treatment for hematological malignancies. Biomed Res Int. 2020;2020:8765028.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.

    Article  CAS  PubMed  Google Scholar 

  13. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31:311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng H, Ma K, Zhang L, Li G. The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells. Cancer Lett. 2021;506:55–66.

    Article  CAS  PubMed  Google Scholar 

  15. Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77:103941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bucks CM, Norton JA, Boesteanu AC, Mueller YM, Katsikis PD. Chronic antigen stimulation alone Is sufficient to drive CD8+ T cell exhaustion. J Immunol. 2009;182:6697–708.

    Article  CAS  PubMed  Google Scholar 

  17. Yin Z, Bai L, Li W, Zeng T, Tian H, Cui J. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J Exp Clin Cancer Res. 2019;38:403.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 2020;78:1019–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng HY, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, et al. Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol. 2021;12:652687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watson MJ, Delgoffe GM. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J Clin Invest. 2022;132:e148549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T Cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00017.

  22. Wang S, Wu J, Shen H, Wang J. The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis. BMC Cancer. 2020;20:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276:121–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, et al. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol. 2022;13:979116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 2023;44:231–44.

    Article  CAS  PubMed  Google Scholar 

  26. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  PubMed  Google Scholar 

  27. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining « T cell exhaustion ». Nat Rev Immunol. 2019;19:665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15:1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory receptors beyond T Cell Exhaustion. Front Immunol. 2015;6:310.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol. 2022;15:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pereira RM, Hogan PG, Rao A, Martinez GJ. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J Leukoc Biol. 2017;102:601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc Natl Acad Sci USA. 2019;116:12410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, et al. T-cell exhaustion and stemness in antitumor immunity: characteristics, mechanisms, and implications. Front Immunol. 2023;14:1104771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujiwara Y, Kato T, Hasegawa F, Sunahara M, Tsurumaki Y. The past, present, and future of clinically applied chimeric antigen receptor-T-cell therapy. Pharm (Basel). 2022;15:207.

    CAS  Google Scholar 

  35. Watanabe N, Mo F, McKenna MK. Impact of manufacturing procedures on CAR T cell functionality. Front Immunol. 2022;13:876339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Xu Y, Dang X, Zhu Z, Qian W, Liang A, et al. Challenges and optimal strategies of CAR T therapy for hematological malignancies. Chin Med J (Engl). 2023;136:269–79.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Z, Tao C, Li J, Tang JCO, Chan ASC, Zhou Y. Chimeric antigen receptor T cells applied to solid tumors. Front Immunol. 2022;13:984864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 2022;19:775–90.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hosseinkhani N, Derakhshani A, Kooshkaki O, Abdoli Shadbad M, Hajiasgharzadeh K, Baghbanzadeh A, et al. Immune checkpoints and CAR-T cells: the pioneers in future cancer therapies? Int J Mol Sci. 2020;21:8305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mirzaei HR, Pourghadamyari H, Rahmati M, Mohammadi A, Nahand JS, Rezaei A, et al. Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett. 2018;423:95–104.

    Article  CAS  PubMed  Google Scholar 

  41. González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the feasibility, efficiency, and safety of genome editing technologies. Int J Mol Sci. 2021;22:10355.

    Article  PubMed  PubMed Central  Google Scholar 

  42. González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica. 2019;104:881–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014;5:43.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep. 2020;40:BSR20200127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khan A, Sarkar E. CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treat Res Commun. 2022;33:100641.

    Article  PubMed  Google Scholar 

  46. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367:7365.

    Article  Google Scholar 

  47. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26:732–40.

    Article  CAS  PubMed  Google Scholar 

  48. Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, et al. Novel CRISPR–Cas systems: an updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 24 mars. 2021;22:3327.

    Article  CAS  Google Scholar 

  49. Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:353–61.

    PubMed  PubMed Central  Google Scholar 

  50. Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283:1218–31.

    Article  CAS  PubMed  Google Scholar 

  51. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 2023;65:311.

    Article  CAS  PubMed  Google Scholar 

  53. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol. 2020;13:166.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7:737.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Choi BD, Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019;7:304.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, et al. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Med. 2017;11:554–62.

    Article  PubMed  Google Scholar 

  57. Giuffrida L, Sek K, Henderson MA, Lai J, Chen AXY, Meyran D, et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat Commun. 2021;12:3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66.

    Article  CAS  PubMed  Google Scholar 

  59. Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight. 2020;5:e133977.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002–11.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Zhang C, Qiao M, Cheng C, Tang N, Lu S, et al. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell. 2022;40:1407–1422.e7.

    Article  CAS  PubMed  Google Scholar 

  62. Good, Aznar MA CR, Kuramitsu S, Samareh P, Agarwal S, Donahue G, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell. 2021;184:6081–6100.e26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zou Y, Liu B, Li L, Yin Q, Tang J, Jing Z, et al. IKZF3 deficiency potentiates chimeric antigen receptor T cells targeting solid tumors. Cancer Lett. 2022;524:121–30.

    Article  CAS  PubMed  Google Scholar 

  64. Yoshikawa T, Wu Z, Inoue S, Kasuya H, Matsushita H, Takahashi Y, et al. Genetic ablation of PRDM1 in antitumor T cells enhances therapeutic efficacy of adoptive immunotherapy. Blood. 2022;139:2156–72.

    Article  CAS  PubMed  Google Scholar 

  65. Jung IY, Narayan V, McDonald S, Rech AJ, Bartoszek R, Hong G, et al. BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion. Sci Transl Med. 2022;14:eabn7336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Srirat T, Hayakawa T, Mise-Omata S, Nakagawara K, Ando M, Shichino S, et al. NR4a1/2 deletion promotes accumulation of TCF1+ stem-like precursors of exhausted CD8+ T cells in the tumor microenvironment. Cell Rep. 2024;43:113898.

    Article  CAS  PubMed  Google Scholar 

  67. Jung IY, Kim YY, Yu HS, Lee M, Kim S, Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 2018;78:4692–703.

    Article  CAS  PubMed  Google Scholar 

  68. Prinzing B, Zebley CC, Petersen CT, Fan Y, Anido AA, Yi Z, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med. 2021;13:eabh0272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jain N, Zhao Z, Koche RP, Antelope C, Gozlan Y, Montalbano A, et al. Disruption of SUV39H1-mediated H3K9 methylation sustains CAR T cell function. Cancer Discov. 2023;14:142–157.

  70. Wiede F, Lu KH, Du X, Zeissig MN, Xu R, Goh PK, et al. PTP1B Is an Intracellular checkpoint that Limits T-cell and CAR T-cell Antitumor Immunity. Cancer Discov. 2022;12:752–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wiede F, Lu K, Du X, Liang S, Hochheiser K, Dodd GT, et al. PTPN2 phosphatase deletion in T cells promotes anti‐tumour immunity and CAR T‐cell efficacy in solid tumours. EMBO J. 2020;39:e103637.

    Article  CAS  PubMed  Google Scholar 

  72. Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-content CRISPR screening. Nat Rev Methods Prim. 2022;2:1–23.

    Google Scholar 

  73. Shi H, Doench JG, Chi H. CRISPR screens for functional interrogation of immunity. Nat Rev Immunol. 2023;23:363–80.

    Article  CAS  PubMed  Google Scholar 

  74. Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell. 2019;178:1189–1204.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Z, Arai E, Khan O, Zhang Z, Ngiow SF, He Y, et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell. 2021;184:1262–1280.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lukhele S, Rabbo DA, Guo M, Shen J, Elsaesser HJ, Quevedo R, et al. The transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict anti-tumor immunity. Immunity. 2022;55:2369–2385.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weisshaar N, Wu J, Ming Y, Madi A, Hotz-Wagenblatt A, Ma S, et al. Rgs16 promotes antitumor CD8+ T cell exhaustion. Sci Immunol. 2022;7:eabh1873.

    Article  CAS  PubMed  Google Scholar 

  78. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui C, et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell. 2018;175:1958–1971.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang D, Prager BC, Gimple RC, Aguilar B, Alizadeh D, Tang H, et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 2021;11:1192–211.

    Article  CAS  PubMed  Google Scholar 

  80. Freitas KA, Belk JA, Sotillo E, Quinn PJ, Ramello MC, Malipatlolla M, et al. Enhanced T cell effector activity by targeting them ediator kinase module. Science. 2022;378:eabn5647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, et al. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells. Nat Commun. 2024;15:603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Belk JA, Yao W, Ly N, Freitas KA, Chen YT, Shi Q, et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell. 2022;40:768–786.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, et al. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 13 Mars. 2024;S1535-6108:00060–6.

    Google Scholar 

  84. Carnevale J, Shifrut E, Kale N, Nyberg WA, Blaeschke F, Chen YY, et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature. 2022;609:174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trefny MP, Kirchhammer N, Auf der Maur P, Natoli M, Schmid D, Germann M, et al. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nat Commun. 2023;14:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi L, Meng T, Zhao Z, Han J, Zhang W, Gao F, et al. CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes. Gene. 2017;636:36–41.

    Article  CAS  PubMed  Google Scholar 

  88. Liu Q, Zhou H, Langdon WY, Zhang J. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle. 2014;13:1875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guan Q, Han M, Guo Q, Yan F, Wang M, Ning Q, et al. Strategies to reinvigorate exhausted CD8+ T cells in tumor microenvironment. Front Immunol. 2023;14:1204363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Seo H, González-Avalos E, Zhang W, Ramchandani P, Yang C, Lio CWJ, et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat Immunol. 2021;22:983–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou P, Shi H, Huang H, Sun X, Yuan S, Chapman NM, et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature. 2023;624:154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, et al. In vitro modeling of CD8 T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. bioRxiv. 17 avr 2023;17:537229. https://doi.org/10.1101/2023.04.17.537229.

  93. Kumar J, Kumar R, Kumar Singh A, Tsakem EL, Kathania M, Riese MJ, et al. Deletion of Cbl-b inhibits CD8+ T-cell exhaustion and promotes CAR T-cell function. J Immunother Cancer. 2021;9:e001688. janv

    Article  PubMed  PubMed Central  Google Scholar 

  94. Larson RC, Kann MC, Bailey SR, Haradhvala NJ, Llopis PM, Bouffard AA, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature. 2022;604:563–70.

    Article  CAS  PubMed  Google Scholar 

  95. Guzman G, Reed MR, Bielamowicz K, Koss B, Rodriguez A. CAR-T Therapies in Solid Tumors: opportunities and challenges. Curr Oncol Rep. 2023;25:479–89.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang S, Wang Y, Mao D, Wang Y, Zhang H, Pan Y, et al. Current trends of clinical trials involving CRISPR/Cas systems. Front Med. 2023. https://www.frontiersin.org/articles/10.3389/fmed.2023.1292452.

  97. Hunt JMT, Samson CA, Rand Adu, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet. 2023;142:705–20.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, et al. CRISPR/Cas9 therapeutics: progress and prospects. Sig Transduct Target Ther. 2023;8:1–23.

    Google Scholar 

  99. Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun. 2023;14:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tsuchida CA, Brandes N, Bueno R, Trinidad M, Mazumder T, Yu B, et al. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells. Cell. 2023;186:4567–4582.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang L, Ingelshed K, Shen Y, Boddul SV, Iyer VS, Kasza Z, et al. CRISPR/cas9-induced DNA damage enriches for mutations in a p53-linked interactome: implications for CRISPR-Based therapies. Cancer Res. 2022;82:36–45.

    Article  CAS  PubMed  Google Scholar 

  102. Testa LC, Musunuru K. Base editing and prime editing: potential therapeutic options for rare and common diseases. BioDrugs. 2023;37:453–62.

    Article  CAS  PubMed  Google Scholar 

  103. Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer. 2022;21:64.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kawamoto H, Masuda K. Trends in cell medicine: from autologous cells to allogeneic universal-use cells for adoptive T-cell therapies. Int Immunol. 2024;36:65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol. 2020;13:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36:346–51.

    Article  CAS  PubMed  Google Scholar 

  107. Batra SA, Rathi P, Guo L, Courtney AN, Fleurence J, Balzeau J, et al. Glypican-3–specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma. Cancer Immunol Res. 2020;8:309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Foeng J, Comerford I, McColl SR. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep. Med. 2022;3:100543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA. 2015;112:10437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cichocki F, van der Stegen SJC, Miller JS. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood. 2023;141:846–55.

    Article  CAS  PubMed  Google Scholar 

  111. Ueda T, Shiina S, Iriguchi S, Terakura S, Kawai Y, Kabai R, et al. Optimization of the proliferation and persistency of CAR T cells derived from human induced pluripotent stem cells. Nat Biomed Eng. 2023;7:24–37.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The figures were created with BioRender.com.

Funding

This work was supported by Ligue contre le cancer N°2022-0047.

Author information

Authors and Affiliations

Authors

Contributions

The authors reviewed the literature cited and wrote the manuscript. They all read and approved the final manuscript.

Corresponding author

Correspondence to Yann Godet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Castro, V., Galaine, J., Loyon, R. et al. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00771-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00771-x

Search

Quick links