Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Romidepsin exhibits anti-esophageal squamous cell carcinoma activity through the DDIT4-mTORC1 pathway

Subjects

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most common human malignancies worldwide and is associated with high morbidity and mortality. Current treatment options are limited, highlighting the need for development of novel effective agents. Here, a high-throughput drug screening (HTS) was performed using ESCC cell lines in both two- and three-dimensional culture systems to screen compounds that have anti-ESCC activity. Our screen identified romidepsin, a histone deactylase inhibitor, as a potential anti-ESCC agent. Romidepsin treatment decreased cell viability, induced apoptosis and cell cycle arrest in ESCC cell lines, and these findings were confirmed in ESCC cell line-derived xenografted (CDX) mouse models. Mechanically, romidepsin induced transcriptional upregulation of DNA damage-inducible transcript 4 (DDIT4) gene by histone hyperacetylation at its promoter region, leading to the inhibition of mammalian target of rapamycin complex 1 (mTORC1) pathway. Furthermore, romidepsin exhibited better efficacy and safety compared to the conventional therapeutic drugs in ESCC patient-derived xenografted (PDX) mouse models. These data indicate that romidepsin may be a novel option for anti-ESCC therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HTS indicates that romidepsin inhibits ESCC cell proliferation in both 2D and 3D culture systems.
Fig. 2: The anti-ESCC activity of romidepsin in vitro.
Fig. 3: The anti-ESCC activity of romidepsin in CDX models.
Fig. 4: Romidepsin enhances DDIT4 expression through histone hyperacetylation at its promoter region.
Fig. 5: DDIT4-mTORC1 pathway mediates the inhibitory effect of romidepsin on the biological behaviors of ESCC cells.
Fig. 6: The efficacy and toxicity of romidepsin in ESCC PDX models.
Fig. 7: Romidepsin inhibits ESCC by activating DDIT4-mTORC1 pathway.

Similar content being viewed by others

Data availability

Correspondence and requests for materials should be addressed to LX-W (lxwu@cqmu.edu.cn).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Reichenbach ZW, Murray MG, Saxena R, Farkas D, Karassik EG, Klochkova A, et al. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res. 2019;144:95–135. https://doi.org/10.1016/bs.acr.2019.05.004.

    Article  CAS  PubMed  Google Scholar 

  3. Codipilly DC, Qin Y, Dawsey SM, Kisiel J, Topazian M, Ahlquist D, et al. Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc. 2018;88:413–26. https://doi.org/10.1016/j.gie.2018.04.2352.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hirano H, Kato K. Systemic treatment of advanced esophageal squamous cell carcinoma: chemotherapy, molecular-targeting therapy and immunotherapy. Jpn J Clin Oncol. 2019;49:412–20. https://doi.org/10.1093/jjco/hyz034.

    Article  PubMed  Google Scholar 

  5. Kondo J, Inoue M. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells. 2019;8:470. https://doi.org/10.3390/cells8050470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee DW, Lee SY, Doh I, Ryu GH, Nam DH. High-Dose Compound Heat Map for 3D-Cultured Glioblastoma Multiforme Cells in a Micropillar and Microwell Chip Platform. Biomed Res Int. 2017;2017:7218707. https://doi.org/10.1155/2017/7218707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, et al. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials. 2019;198:167–79. https://doi.org/10.1016/j.biomaterials.2018.05.020.

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y, Dai Y, Wen C, He S, Shi J, Zhao D, et al. circSETD3 Contributes to Acquired Resistance to Gefitinib in Non-Small-Cell Lung Cancer by Targeting the miR-520h/ABCG2 Pathway. Mol Ther Nucleic Acids. 2020;21:885–99. https://doi.org/10.1016/j.omtn.2020.07.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91. https://doi.org/10.1200/JCO.2010.28.9066.

    Article  CAS  PubMed  Google Scholar 

  10. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4:67–73. https://doi.org/10.1177/108705719900400206.

    Article  CAS  PubMed  Google Scholar 

  12. Thuss-Patience P, Stein A. Immunotherapy in Squamous Cell Cancer of the Esophagus. Curr Oncol. 2022;29:2461–71. https://doi.org/10.3390/curroncol29040200.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers. 2022;14:3368. https://doi.org/10.3390/cancers14143368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Foltyn M, Luger AL, Lorenz NI, Sauer B, Mittelbronn M, Harter PN, et al. The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. Br J Cancer. 2019;120:481–7. https://doi.org/10.1038/s41416-018-0368-3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. El Omari N, Lee LH, Bakrim S, Makeen HA, Alhazmi HA, Mohan S, et al. Molecular mechanistic pathways underlying the anticancer therapeutic efficiency of romidepsin. Biomed Pharmacother. 2023;164:114774. https://doi.org/10.1016/j.biopha.2023.114774.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Han E, Xing Q, Yan J, Arrington A, Wang C, et al. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells. Cancer Lett. 2015;358:170–9. https://doi.org/10.1016/j.canlet.2014.12.033.

    Article  CAS  PubMed  Google Scholar 

  17. Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017;36:2191–201. https://doi.org/10.1038/onc.2016.363.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, et al. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int. 2023;23:120. https://doi.org/10.1186/s12935-023-02953-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rivers ZT, Oostra DR, Westholder JS, Vercellotti GM. Romidepsin-associated cardiac toxicity and ECG changes: A case report and review of the literature. J Oncol Pharm Pr. 2018;24:56–62. https://doi.org/10.1177/1078155216673229.

    Article  Google Scholar 

  20. Shi Y, Fu Y, Zhang X, Zhao G, Yao Y, Guo Y, et al. Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother. 2021;70:61–73. https://doi.org/10.1007/s00262-020-02653-1.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang YY, Jiang Y, Li CQ, Zhang Y, Dakle P, Kaur H, et al. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology. 2020;159:1311–e19.

    Article  CAS  PubMed  Google Scholar 

  22. Hoshino I, Matsubara H, Akutsu Y, Nishimori T, Yoneyama Y, Murakami K, et al. Gene expression profiling induced by histone deacetylase inhibitor, FK228, in human esophageal squamous cancer cells. Oncol Rep. 2007;18:585–92.

    CAS  PubMed  Google Scholar 

  23. Hoshino I, Matsubara H, Hanari N, Mori M, Nishimori T, Yoneyama Y, et al. Histone deacetylase inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in esophageal cancer cells. Clin Cancer Res. 2005;11:7945–52. https://doi.org/10.1158/1078-0432.CCR-05-0840.

    Article  CAS  PubMed  Google Scholar 

  24. Ahrens TD, Timme S, Hoeppner J, Ostendorp J, Hembach S, Follo M, et al. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics. 2015;10:431–45. https://doi.org/10.1080/15592294.2015.1039216.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shah RR. Safety and Tolerability of Histone Deacetylase (HDAC) Inhibitors in Oncology. Drug Saf. 2019;42:235–45. https://doi.org/10.1007/s40264-018-0773-9.

    Article  CAS  PubMed  Google Scholar 

  26. Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 2002;22:2283–93. https://doi.org/10.1128/MCB.22.7.2283-2293.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002;10:995–1005. https://doi.org/10.1016/s1097-2765(02)00706-2.

    Article  CAS  PubMed  Google Scholar 

  28. Zhidkova EM, Lylova ES, Grigoreva DD, Kirsanov KI, Osipova AV, Kulikov EP, et al. Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci. 2022;23:9686. https://doi.org/10.3390/ijms23179686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding F, Gao F, Zhang S, Lv X, Chen Y, Liu Q. A review of the mechanism of DDIT4 serve as a mitochondrial related protein in tumor regulation. Sci Prog. 2021;104:36850421997273. https://doi.org/10.1177/0036850421997273.

    Article  CAS  PubMed  Google Scholar 

  30. Tirado-Hurtado I, Fajardo W, Pinto JA. DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer. Front Oncol. 2018;8:106. https://doi.org/10.3389/fonc.2018.00106.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Song L, Chen Z, Zhang M, Zhang M, Lu X, Li C, et al. DDIT4 overexpression associates with poor prognosis in lung adenocarcinoma. J Cancer. 2021;12:6422–8. https://doi.org/10.7150/jca.60118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Zhu H, Zhao C, Liu D, Luo J, Ying Y, et al. DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog. 2023;62:332–47. https://doi.org/10.1002/mc.23489.

    Article  CAS  PubMed  Google Scholar 

  33. Koo JS, Jung W. Alteration of REDD1-mediated mammalian target of rapamycin pathway and hypoxia-inducible factor-1alpha regulation in human breast cancer. Pathobiology. 2010;77:289–300. https://doi.org/10.1159/000320936.

    Article  CAS  PubMed  Google Scholar 

  34. Peng X, Yang R, Peng W, Zhao Z, Tu G, He B, et al. Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328. PeerJ. 2022;10:e14180. https://doi.org/10.7717/peerj.14180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu T, Wang F, Han G. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci Lett. 2020;728:134896. https://doi.org/10.1016/j.neulet.2020.134896.

    Article  CAS  PubMed  Google Scholar 

  36. Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30:2463–74. https://doi.org/10.1038/onc.2010.618.

    Article  CAS  PubMed  Google Scholar 

  37. Chen W, Chen Y, Wu R, Guo G, Liu Y, Zeng B, et al. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m(6)A/DDIT4/PGC1alpha signaling. BMC Biol. 2022;20:39. https://doi.org/10.1186/s12915-022-01239-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:71. https://doi.org/10.1186/s13045-019-0754-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang S, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. Regulation of mTORC1 by amino acids in mammalian cells: A general picture of recent advances. Anim Nutr. 2021;7:1009–23. https://doi.org/10.1016/j.aninu.2021.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Tao L, Zuo Z, Zhou Y, Qian X, Lin Y, et al. ZY0511, a novel, potent and selective LSD1 inhibitor, exhibits anticancer activity against solid tumors via the DDIT4/mTOR pathway. Cancer Lett. 2019;454:179–90. https://doi.org/10.1016/j.canlet.2019.03.052.

    Article  CAS  PubMed  Google Scholar 

  41. Liao KF, Chiu TL, Huang SY, Hsieh TF, Chang SF, Ruan JW, et al. Anti-Cancer Effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on Gastric Cancer: Implications for REDD1 Activation and mTOR Inhibition. Cell Physiol Biochem. 2018;48:2231–46. https://doi.org/10.1159/000492641.

    Article  CAS  PubMed  Google Scholar 

  42. Kim TS, Lee M, Park M, Kim SY, Shim MS, Lee CY, et al. Metformin and Dichloroacetate Suppress Proliferation of Liver Cancer Cells by Inhibiting mTOR Complex 1. Int J Mol Sci. 2021;22:10027. https://doi.org/10.3390/ijms221810027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 2022;20:206. https://doi.org/10.1186/s12967-022-03405-8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 82073938, 82274023, 82373135), Youth Innovation in Future Medicine, Chongqing Medical University (No. W0093), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJQN202200432).

Author information

Authors and Affiliations

Authors

Contributions

WFX: Methodology, Formal analysis, Investigation, Writing – original draft. XLZ: Methodology, Formal analysis, Investigation. WYL: Methodology, Resources. YTH: Formal analysis, Investigation. CJW: Investigation. HHZ: Data interpretation. QCW: Project administration, Supervision. LXW: Writing-review & editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Qing-Chen Wu or Lan-Xiang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, WF., Zheng, XL., Liu, WY. et al. Romidepsin exhibits anti-esophageal squamous cell carcinoma activity through the DDIT4-mTORC1 pathway. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00760-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00760-0

Search

Quick links