Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effects of intracellular and exosomal ncRNAs on cancer progression

Abstract

Altered gene expression as well as mislocalization of a gene’s encoded product (proteins or noncoding RNAs (ncRNAs)) can lead to disease and cancer formation. Multiple studies have indicated that exosomes and their contents act as cell-to-cell communicators and play a key role in cancer progression. Moreover, exosomes contain several functional molecules, including ncRNAs. NcRNAs function as master regulators to coordinate cell growth, cell motility and drug resistance. However, intracellular ncRNAs, which can be transferred to recipient cells via exosomes (exosomal ncRNAs), mediate common/distinct downstream molecules, signaling pathways and functions that are less emphasized concepts in cancer development research. In this study, by using exosomes as a model, we comprehensively discuss the current knowledge regarding (1) the functional role of ncRNAs, both their intracellular and exosomal forms, in cancer progression, (2) the possible mechanism of ncRNA incorporation into exosomes and (3) the therapeutic applications and limitations of exosomes based on current knowledge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The model of miRNA biogenesis and its action in eukaryotic cells.
Fig. 2: The model of lncRNA biogenesis and its action in eukaryotic cells.
Fig. 3: The model of circRNA biogenesis and its action in eukaryotic cells.

Similar content being viewed by others

References

  1. Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, et al. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci. 2022;23:3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol Biochem. 2018;51:2647–93.

    Article  CAS  PubMed  Google Scholar 

  3. Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6:307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witwer KW, Thery C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesic. 2019;8:1648167.

    Article  Google Scholar 

  7. Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci. 2023;24:7287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Huang J, Chen W, Li G, Li Z, Lei J. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp Mol Med. 2022;54:1390–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Meldolesi J. Exosomes and Ectosomes in Intercellular Communication. Curr Biol. 2018;28:R435–R44.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA. 2009;106:3794–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. Int J Mol Sci. 2022;23:1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen J, Creaven D, Luan X, Wang J. Comparison of immunotherapy mediated by apoptotic bodies, microvesicles and exosomes: apoptotic bodies’ unique anti-inflammatory potential. J Transl Med. 2023;21:478.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ogami K, Chen Y, Manley JL. RNA surveillance by the nuclear RNA exosome: mechanisms and significance. Noncoding RNA. 2018;4:8.

    PubMed  PubMed Central  Google Scholar 

  17. Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol. 2016;17:227–39.

    Article  CAS  PubMed  Google Scholar 

  18. Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA. 2018;24:127–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Q, Jeppesen DK, Higginbotham JN, Graves-Deal R, Trinh VQ, Ramirez MA, et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol. 2021;23:1240–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anand S, Samuel M, Mathivanan S. Exomeres: A New Member of Extracellular Vesicles Family. Subcell Biochem. 2021;97:89–97.

    Article  CAS  PubMed  Google Scholar 

  21. Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65:625–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santini T, Martone J, Ballarino M. Visualization of Nuclear and Cytoplasmic Long Noncoding RNAs at Single-Cell Level by RNA-FISH. Methods Mol Biol. 2021;2157:251–80.

    Article  CAS  PubMed  Google Scholar 

  23. Qiu Y, Li P, Zhang Z, Wu M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front Oncol. 2021;11:664904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402.

    Article  PubMed  Google Scholar 

  25. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, et al. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol. 2020;8:616161.

    Article  PubMed  Google Scholar 

  27. Li C, Zhou T, Chen J, Li R, Chen H, Luo S, et al. The role of Exosomal miRNAs in cancer. J Transl Med. 2022;20:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells. 2022;11:2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Article  CAS  PubMed  Google Scholar 

  30. Huang YH, Lin YH, Chi HC, Liao CH, Liao CJ, Wu SM, et al. Thyroid hormone regulation of miR-21 enhances migration and invasion of hepatoma. Cancer Res. 2013;73:2505–17.

    Article  CAS  PubMed  Google Scholar 

  31. Suehiro T, Miyaaki H, Kanda Y, Shibata H, Honda T, Ozawa E, et al. Serum exosomal microRNA-122 and microRNA-21 as predictive biomarkers in transarterial chemoembolization-treated hepatocellular carcinoma patients. Oncol Lett. 2018;16:3267–73.

    PubMed  PubMed Central  Google Scholar 

  32. Cao LQ, Yang XW, Chen YB, Zhang DW, Jiang XF, Xue P. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer. 2019;18:148.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma Y, Qin C, Li L, Miao R, Jing C, Cui X. MicroRNA-21 promotes cell proliferation by targeting tumor suppressor TET1 in colorectal cancer. Int J Clin Exp Pathol. 2018;11:1439–45.

    PubMed  PubMed Central  Google Scholar 

  34. Jiang LH, Ge MH, Hou XX, Cao J, Hu SS, Lu XX, et al. miR-21 regulates tumor progression through the miR-21-PDCD4-Stat3 pathway in human salivary adenoid cystic carcinoma. Lab Investig. 2015;95:1398–408.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Xin S, He Z, Che X, Wang J, Xiao X, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell Physiol Biochem. 2014;33:1631–42.

    Article  CAS  PubMed  Google Scholar 

  36. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  37. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283:1026–33.

    Article  CAS  PubMed  Google Scholar 

  38. Sun LH, Tian D, Yang ZC, Li JL. Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4. Sci Rep. 2020;10:8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang PS, Lin YH, Chi HC, Chen PY, Huang YH, Yeh CT, et al. Thyroid hormone inhibits growth of hepatoma cells through induction of miR-214. Sci Rep. 2017;7:14868.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shih TC, Tien YJ, Wen CJ, Yeh TS, Yu MC, Huang CH, et al. MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol. 2012;57:584–91.

    Article  CAS  PubMed  Google Scholar 

  41. Semaan L, Zeng Q, Lu Y, Zhang Y, Zreik MM, Chamseddine MB, et al. MicroRNA-214 enriched exosomes from human cerebral endothelial cells (hCEC) sensitize hepatocellular carcinoma to anti-cancer drugs. Oncotarget. 2021;12:185–98.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology. 2014;59:1118–29.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu W, Wang Q, Zhang J, Sun L, Hong X, Du W, et al. Exosomes derived from mir-214-3p overexpressing mesenchymal stem cells promote myocardial repair. Biomater Res. 2023;27:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Chen W, Zhang H, Liu T, Zhao L. miR-214 targets the PTEN-mediated PI3K/Akt signaling pathway and regulates cell proliferation and apoptosis in ovarian cancer. Oncol Lett. 2017;14:5711–8.

    PubMed  PubMed Central  Google Scholar 

  45. Lei Y, Yang M, Li H, Xu R, Liu J. miR‑130b regulates PTEN to activate the PI3K/Akt signaling pathway and attenuate oxidative stress‑induced injury in diabetic encephalopathy. Int J Mol Med. 2021;48:141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan W, Wang Y, Chen Y, Guo Y, Li Q, Wei X. Exosomal miR-130b-3p Promotes Progression and Tubular Formation Through Targeting PTEN in Oral Squamous Cell Carcinoma. Front Cell Dev Biol. 2021;9:616306.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  48. Ding J, Li J, Wang H, Tian Y, Xie M, He X, et al. Long noncoding RNA CRNDE promotes colorectal cancer cell proliferation via epigenetically silencing DUSP5/CDKN1A expression. Cell Death Dis. 2017;8:e2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu YC, Lin YH, Chi HC, Huang PS, Liao CJ, Liou YS, et al. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin Epigenet. 2022;14:106.

    Article  CAS  Google Scholar 

  50. Wang T, Zhu H, Xiao M, Zhou S. Serum exosomal long noncoding RNA CRNDE as a prognostic biomarker for hepatocellular carcinoma. J Clin Lab Anal. 2021;35:e23959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu-Ge D, Yang YP, Jiang ZJ. Knockdown CRNDE alleviates LPS-induced inflammation injury via FOXM1 in WI-38 cells. Biomed Pharmacother. 2018;103:1678–87.

    Article  PubMed  Google Scholar 

  52. Zhang XY, Chen ZC, Li N, Wang ZH, Guo YL, Tian CJ, et al. Exosomal transfer of activated neutrophil-derived lncRNA CRNDE promotes proliferation and migration of airway smooth muscle cells in asthma. Hum Mol Genet. 2022;31:638–50.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou Y, Fan RG, Qin CL, Jia J, Wu XD, Zha WZ. LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics. 2019;111:1862–72.

    Article  CAS  PubMed  Google Scholar 

  54. Liu G, Xiang T, Wu QF, Wang WX. Long Noncoding RNA H19-Derived miR-675 Enhances Proliferation and Invasion via RUNX1 in Gastric Cancer Cells. Oncol Res. 2016;23:99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu Y, Liu Y, Li Z, Li H, Li X, Yan L, et al. Long non‑coding RNA H19 is involved in sorafenib resistance in hepatocellular carcinoma by upregulating miR‑675. Oncol Rep. 2020;44:165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Z, Li Y, Li Y, Ren K, Li X, Han X, et al. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol. 2017;31:e21933.

    Article  Google Scholar 

  57. Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, et al. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 2016;381:359–69.

    Article  CAS  PubMed  Google Scholar 

  58. Du C, Cheng Q, Zhao P, Wang C, Zhu Z, Wu X, et al. LncRNA H19 mediates BMP9-induced angiogenesis in mesenchymal stem cells by promoting the p53-Notch1 angiogenic signaling axis. Genes Dis. 2023;10:1040–54.

    Article  CAS  PubMed  Google Scholar 

  59. Schultheiss CS, Laggai S, Czepukojc B, Hussein UK, List M, Barghash A, et al. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress. 2017;1:37–54.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shaikh MV, Kala M, Nivsarkar M. CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomark. 2016;16:301–7.

    Article  CAS  PubMed  Google Scholar 

  61. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, et al. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–26.

    Article  CAS  PubMed  Google Scholar 

  63. Zhong ME, Chen Y, Zhang G, Xu L, Ge W, Wu B. LncRNA H19 regulates PI3K-Akt signal pathway by functioning as a ceRNA and predicts poor prognosis in colorectal cancer: integrative analysis of dysregulated ncRNA-associated ceRNA network. Cancer Cell Int. 2019;19:148.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Investig Dermatol. 2014;134:1075–82.

    Article  CAS  PubMed  Google Scholar 

  65. Lin YH, Wu MH, Huang YH, Yeh CT, Cheng ML, Chi HC, et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 2018;67:188–203.

    Article  CAS  PubMed  Google Scholar 

  66. Lu L, Huang J, Mo J, Da X, Li Q, Fan M, et al. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett. 2022;27:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang CZ, Yan GX, Dong DS, Xin H, Liu ZY. LncRNA-ATB promotes autophagy by activating Yes-associated protein and inducing autophagy-related protein 5 expression in hepatocellular carcinoma. World J Gastroenterol. 2019;25:5310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer. 2019;144:1444–52.

    Article  CAS  PubMed  Google Scholar 

  69. Yuan D, Qian H, Guo T, Ye J, Jin C, Liu X, et al. LncRNA-ATB Promotes the Tumorigenesis of Ovarian Cancer via Targeting miR-204-3p. Onco Targets Ther. 2020;13:573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuan D, Guo T, Zhu D, Ge H, Zhao Y, Huang A, et al. Exosomal lncRNA ATB Derived from Ovarian Cancer Cells Promotes Angiogenesis via Regulating miR-204-3p/TGFbetaR2 Axis. Cancer Manag Res. 2022;14:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, et al. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front Cell Dev Biol. 2021;9:617281.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huang XY, Huang ZL, Zhang PB, Huang XY, Huang J, Wang HC, et al. CircRNA-100338 Is Associated With mTOR Signaling Pathway and Poor Prognosis in Hepatocellular Carcinoma. Front Oncol. 2019;9:392.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang XY, Huang ZL, Xu YH, Zheng Q, Chen Z, Song W, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep. 2017;7:5428.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu C, Su Y, Liu L, Wang S, Liu Y, Wu J. Circular RNA hsa_circ_0004277 Stimulates Malignant Phenotype of Hepatocellular Carcinoma and Epithelial-Mesenchymal Transition of Peripheral Cells. Front Cell Dev Biol. 2020;8:585565.

    Article  PubMed  Google Scholar 

  76. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu H, Han X, Ren J, Ren K, Li Z, Sun Z. Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biol Ther. 2020;21:113–21.

    Article  CAS  PubMed  Google Scholar 

  78. Tang Y, Liu J, Li X, Wang W. Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway. J Biosci. 2021;46:69.

    Article  CAS  PubMed  Google Scholar 

  79. Edgar JR. Q&A: What are exosomes, exactly? BMC Biol. 2016;14:46.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xie S, Zhang Q, Jiang L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. Membr (Basel). 2022;12:498.

    CAS  Google Scholar 

  81. Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci. 2018;75:1–19.

    Article  CAS  PubMed  Google Scholar 

  82. van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, et al. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells. Cell Rep. 2015;13:43–51.

    Article  PubMed  Google Scholar 

  83. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.

    Article  CAS  PubMed  Google Scholar 

  84. Wei H, Chen Q, Lin L, Sha C, Li T, Liu Y, et al. Regulation of exosome production and cargo sorting. Int J Biol Sci. 2021;17:163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016;15:978–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deng M, Chen B, Liu Z, Wan Y, Li D, Yang Y, et al. YBX1 mediates alternative splicing and maternal mRNA decay during pre-implantation development. Cell Biosci. 2022;12:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mordovkina D, Lyabin DN, Smolin EA, Sogorina EM, Ovchinnikov LP, Eliseeva I. Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules. 2020;10:591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma L, Singh J, Schekman R. Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes. Elife. 2023;12:e85878.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  Google Scholar 

  90. Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, et al. Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell. 2016;29:653–68.

    Article  CAS  PubMed  Google Scholar 

  91. Lei Y, Guo W, Chen B, Chen L, Gong J, Li W. Tumor‑released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non‑small cell lung cancer. Oncol Rep. 2018;40:3438–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee H, Li C, Zhang Y, Zhang D, Otterbein LE, Jin Y. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J Exp Med. 2019;216:2202–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo Q, Fan Y, Wang Q, Li B, Qiu W, Qi Y, et al. Glioblastoma upregulates SUMOylation of hnRNP A2/B1 to eliminate the tumor suppressor miR-204-3p, accelerating angiogenesis under hypoxia. Cell Death Dis. 2023;14:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng H, Chen C, Luo Y, Yu M, He W, An M, et al. Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin Transl Med. 2021;11:e497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen C, Zheng H, Luo Y, Kong Y, An M, Li Y, et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer. J Clin Investig. 2021;131:e146431.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhu Y, Xu G, Yang YT, Xu Z, Chen X, Shi B, et al. POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Res. 2019;47:D203–D11.

    Article  CAS  PubMed  Google Scholar 

  97. Pan Y, Lu X, Shu G, Cen J, Lu J, Zhou M, et al. Extracellular Vesicle-Mediated Transfer of LncRNA IGFL2-AS1 Confers Sunitinib Resistance in Renal Cell Carcinoma. Cancer Res. 2023;83:103–16.

    Article  CAS  PubMed  Google Scholar 

  98. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8:1649–58.

    Article  CAS  PubMed  Google Scholar 

  99. He PC, He C. m(6) A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 2021;40:e105977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021;184:3109–24.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abner JJ, Franklin JL, Clement MA, Hinger SA, Allen RM, Liu X, et al. Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m(6)A consensus sequences. Heliyon. 2021;7:e08519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Qin X. N6‑methyladenosine upregulates miR‑181d‑5p in exosomes derived from cancer‑associated fibroblasts to inhibit 5‑FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 2022;60:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shu B, Zhang RZ, Zhou YX, He C, Yang X. METTL3-mediated macrophage exosomal NEAT1 contributes to hepatic fibrosis progression through Sp1/TGF-beta1/Smad signaling pathway. Cell Death Discov. 2022;8:266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang Z, He J, Bach DH, Huang YH, Li Z, Liu H, et al. Induction of m(6)A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 2022;41:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kumar S, Mohapatra T. Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Front Cell Dev Biol. 2021;9:628415.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tommasone S, Allabush F, Tagger YK, Norman J, Kopf M, Tucker JHR, et al. The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev. 2019;48:5488–505.

    Article  CAS  PubMed  Google Scholar 

  107. Kim JH, Lee CH, Baek MC. Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Exp Mol Med. 2022;54:1833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Engreitz J, Lander ES, Guttman M. RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol Biol. 2015;1262:183–97.

    Article  CAS  PubMed  Google Scholar 

  109. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12:655–64.

    Article  CAS  PubMed  Google Scholar 

  111. Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transpl. 2019;54:789–92.

    Article  Google Scholar 

  112. Xu Y, Lai Y, Cao L, Li Y, Chen G, Chen L, et al. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biol. 2021;18:1408–23.

    Article  CAS  PubMed  Google Scholar 

  113. Shang C, Ke M, Liu L, Wang C, Liu Y, Zheng X. Exosomes From Cancer-Associated Mesenchymal Stem Cells Transmit TMBIM6 to Promote the Malignant Behavior of Hepatocellular Carcinoma via Activating PI3K/AKT Pathway. Front Oncol. 2022;12:868726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. Review on Strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol. 2021;9:811971.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by grants from Chang Gung Memorial Hospital, Taoyuan, Taiwan (NRRPG3L6012 and NRRPG3L6013 to YHL) and from the National Science and Technology Council (NSTC 110-2311-B-182A-001-MY3 to YHL).

Author information

Authors and Affiliations

Authors

Contributions

Y-HL: conception and design, drafting of the paper and approval of final paper.

Corresponding author

Correspondence to Yang-Hsiang Lin.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH. The effects of intracellular and exosomal ncRNAs on cancer progression. Cancer Gene Ther 30, 1587–1597 (2023). https://doi.org/10.1038/s41417-023-00679-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00679-y

Search

Quick links