Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-leukemia effects of omipalisib in acute myeloid leukemia: inhibition of PI3K/AKT/mTOR signaling and suppression of mitochondrial biogenesis

Abstract

Omipalisib (GSK2126458), a potent dual PI3K/mTOR inhibitor, is reported to exhibit anti-tumor effect in several kinds of cancers. More than 50% of acute myeloid leukemia (AML) patients display a hyperactivation of PI3K/AKT/mTOR signaling. We investigated the anti-proliferative effect of omipalisib in AML cell lines with varied genetic backgrounds. The OCI-AML3 and THP-1 cell lines had a significant response to omipalisib, with IC50 values of 17.45 nM and 8.93 nM, respectively. We integrated transcriptomic profile and metabolomic analyses, and followed by gene set enrichment analysis (GSEA) and metabolite enrichment analysis. Our findings showed that in addition to inhibiting PI3K/AKT/mTOR signaling and inducing cell cycle arrest at the G0/G1 phase, omipalisib also suppressed mitochondrial respiration and biogenesis. Furthermore, omipalisib downregulated several genes associated with serine, glycine, threonine, and glutathione metabolism, and decreased their protein and glutathione levels. In vivo experiments revealed that omipalisib significantly inhibited tumor growth and prolonged mouse survival without weight loss. Gedatolisib and dactolisib, another two PI3K/mTOR inhibitors, exerted similar effects without affecting mitochondria biogenesis. These results highlight the multifaceted anti-leukemic effect of omipalisib, revealing its potential as a novel therapeutic agent in AML treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro effects of omipalisib and gedatolisib on OCI-AML3 and THP-1 myeloid leukemia cells.
Fig. 2: Transcriptomic analysis of omipalisib-treated OCI-AML3 cells.
Fig. 3: Omipalisib suppressed oxidative phosphorylation and inhibited mitochondrial biogenesis in OCI-AML3.
Fig. 4: Metabolomic analysis revealed that omipalisib represses amino acids and glutathione metabolism in OCI-AML3.
Fig. 5: Omipalisib suppressed serine biosynthesis and impaired glutathione metabolism.
Fig. 6: Omipalisib impedes the growth of subcutaneous OCI-AML3 xenograft tumors in mice.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its Supplementary Information files. The RNA-sequencing data generated during this study are posited in the Gene Expression Omnibus (GEO) database (ID: GSE224155).

References

  1. Assi SA, Imperato MR, Coleman DJL, Pickin A, Potluri S, Ptasinska A, et al. Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat Genet. 2019;51:151–62.

    Article  CAS  PubMed  Google Scholar 

  2. Jahn N, Terzer T, Sträng E, Dolnik A, Cocciardi S, Panina E, et al. Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication. Blood Adv. 2020;4:6342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020;5:288.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J. 2020;10:107.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. Cell 2017;169:381–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saxton RA, Sabatini DM. mTOR Signaling in growth, metabolism, and fisease. Cell 2017;168:960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sophie P, Nicolas C, Jérôme T, Valérie B, Pascale C-L, Lise W, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010;95:819–28.

    Article  Google Scholar 

  8. Bertacchini J, Guida M, Accordi B, Mediani L, Martelli AM, Barozzi P, et al. Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia. 2014;28:2197–205.

    Article  CAS  PubMed  Google Scholar 

  9. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwäble J, et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res. 2005;65:9643–50.

    Article  CAS  PubMed  Google Scholar 

  10. Malaise M, Steinbach D, Corbacioglu S. Clinical implications of c-Kit mutations in acute myelogenous leukemia. Curr Hematol Malignancy Rep. 2009;4:77–82.

    Article  Google Scholar 

  11. Wang S, Wu Z, Li T, Li Y, Wang W, Hao Q, et al. Mutational spectrum and prognosis in NRAS-mutated acute myeloid leukemia. Sci Rep. 2020;10:12152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pillinger G, Loughran NV, Piddock RE, Shafat MS, Zaitseva L, Abdul-Aziz A, et al. Targeting PI3Kδ and PI3Kγ signalling disrupts human AML survival and bone marrow stromal cell mediated protection. Oncotarget. 2016;7:39784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Colamonici M, Blyth G, Saleiro D, Szilard A, Bliss-Moreau M, Giles FJ, et al. Dual targeting of acute myeloid leukemia progenitors by catalytic mTOR inhibition and blockade of the p110α subunit of PI3 kinase. Oncotarget. 2015;6:8062–70.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nguyen LXT, Sesay A, Mitchell BS. Effect of CAL-101, a PI3Kδ inhibitor, on ribosomal RNA synthesis and cell proliferation in acute myeloid leukemia cells. Blood. Cancer J. 2014;4:e228.

    CAS  Google Scholar 

  15. Allegretti M, Ricciardi MR, Licchetta R, Mirabilii S, Orecchioni S, Reggiani F, et al. The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 demonstrates anti-leukemic activity in acute myeloid leukemia. Sci Rep. 2015;5:18137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng Z, Sarbassov DD, Samudio IJ, Yee KWL, Munsell MF, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 2006;109:3509–12.

    Article  PubMed  Google Scholar 

  17. Deng L, Jiang L, Lin X-H, Tseng K-F, Liu Y, Zhang X, et al. The PI3K/mTOR dual inhibitor BEZ235 suppresses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia. Acta Pharmacol Sin. 2017;38:382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindblad O, Cordero E, Puissant A, Macaulay L, Ramos A, Kabir NN, et al. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene. 2016;35:5119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lang F, Wunderle L, Badura S, Schleyer E, Brüggemann M, Serve H, et al. A phase I study of a dual PI3-kinase/mTOR inhibitor BEZ235 in adult patients with relapsed or refractory acute leukemia. BMC Pharmacol Toxicol. 2020;21:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vargaftig J, Farhat H, Ades L, Briaux A, Benoist C, Turbiez I, et al. Phase 2 Trial of Single Agent Gedatolisib (PF-05212384), a dual PI3K/mTOR Inhibitor, for adverse prognosis and relapse/refractory AML: clinical and transcriptomic results. Blood. 2018;132:5233.

    Article  Google Scholar 

  21. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett. 2010;1:39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu T, Sun Q, Li Q, Yang H, Zhang Y, Wang R, et al. Dual PI3K/mTOR Inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma. Mol Cancer Therap. 2015;14:429.

    Article  CAS  Google Scholar 

  23. Wong K, Di Cristofano F, Ranieri M, De Martino D, Di Cristofano A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr-Relat Cancer. 2019;26:425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernard M, Cardin GB, Cahuzac M, Ayad T, Bissada E, Guertin L, et al. Dual inhibition of autophagy and PI3K/AKT/MTOR pathway as a therapeutic strategy in head and neck squamous cell carcinoma. Cancers 2020;12:2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKinnon T, Venier R, Yohe M, Sindiri S, Gryder B, Shern JF, et al. Functional screening of FGER4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene. 2018;37:2630–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng Y, Jiang Y, Hao F. GSK2126458 has the potential to inhibit the proliferation of pancreatic cancer uncovered by bioinformatics analysis and pharmacological experiments. J Transl Med. 2021;19:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su KW, Ou DL, Fu YH, Tien HF, Hou HA, Lin LI. Repurposing cabozantinib with therapeutic potential in KIT-driven t(8;21) acute myeloid leukaemias. Cancer Gene Ther. 2022;29:519–32.

    Article  CAS  PubMed  Google Scholar 

  28. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim et Biophys Acta. 2011;1813:1269–78.

    Article  CAS  Google Scholar 

  29. Pollari S, Käkönen S-M, Edgren H, Wolf M, Kohonen P, Sara H, et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 2011;125:421–30.

    Article  CAS  PubMed  Google Scholar 

  30. Mullarky E, Mattaini KR, Vander Heiden MG, Cantley LC, Locasale JW. PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res. 2011;24:1112–5.

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Guo S, Li Q, Yang L, Xia Z, Zhang L, et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J Neuro-Oncol. 2013;111:245–55.

    Article  CAS  Google Scholar 

  32. Sun WY, Kim HM, Jung W-H, Koo JS. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J Transl Med. 2016;14:168.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bjelosevic S, Gruber E, Newbold A, Shembrey C, Devlin JR, Hogg SJ, et al. Serine biosynthesis is a metabolic vulnerability in FLT3-ITD–driven acute myeloid leukemia. Cancer Discov. 2021;11:1582.

    Article  CAS  PubMed  Google Scholar 

  34. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16:650–62.

    Article  CAS  PubMed  Google Scholar 

  36. Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20:674–88.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Basak NP, Banerjee S. Mitochondrial dependency in progression of acute myeloid leukemia. Mitochondrion 2015;21:41–8.

    Article  CAS  PubMed  Google Scholar 

  38. Schimmer AD, Škrtić M. Therapeutic potential of mitochondrial translation inhibition for treatment of acute myeloid leukemia. Expert Rev Hematol. 2012;5:117–9.

    Article  CAS  PubMed  Google Scholar 

  39. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mendez-Ferrer S. Molecular interactome between HSCs and their niches. Blood. 2019;134:1197–8.

    Article  CAS  PubMed  Google Scholar 

  41. Marlein CR, Zaitseva L, Piddock RE, Robinson SD, Edwards DR, Shafat MS, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017;130:1649–60.

    Article  CAS  PubMed  Google Scholar 

  42. Mistry JJ, Moore JA, Kumar P, Marlein CR, Hellmich C, Pillinger G, et al. Daratumumab inhibits acute myeloid leukemia metabolic capacity by blocking mitochondrial transfer from mesenchymal stromal cells. Haematologica. 2021;106:589–92.

    Article  PubMed  Google Scholar 

  43. Ludikhuize MC, Meerlo M, Burgering BMT, Rodriguez Colman MJ. Protocol to profile the bioenergetics of organoids using Seahorse. STAR Protoc. 2021;2:100386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Russell S, Wojtkowiak J, Neilson A, Gillies RJ. Metabolic Profiling of healthy and cancerous tissues in 2D and 3D. Sci Rep. 2017;7:15285.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A Cold-Inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–39.

    Article  CAS  PubMed  Google Scholar 

  46. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277:1645–8.

    Article  CAS  PubMed  Google Scholar 

  47. Shiota M, Yokomizo A, Tada Y, Inokuchi J, Tatsugami K, Kuroiwa K, et al. Peroxisome proliferator-activated receptor γ coactivator-1α interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol Endocrinol. 2010;24:114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGuirk S, Gravel S-P, Deblois G, Papadopoli DJ, Faubert B, Wegner A, et al. PGC-1α supports glutamine metabolism in breast cancer. Cancer Metab. 2013;1:22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vazquez F, Lim J-H, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23:287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. LaGory Edward L, Wu C, Taniguchi Cullen M, Ding C-Kuang C, Chi J-T, von Eyben R, et al. Suppression of PGC-1α is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep. 2015;12:116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22:590–605.

    Article  CAS  PubMed  Google Scholar 

  52. Fisher Kurt W, Das B, Kim Hyun S, Clymer Beth K, Gehring D, Smith Deandra R, et al. AMPK promotes aberrant PGC1β expression to support human colon tumor cell survival. Mol Cell Biol. 2015;35:3866–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Li L, Chen Q, Li M, Feng J, Sun Y, et al. PGC1β regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism. Mol Oncol. 2018;12:1579–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen X, Lv Y, Sun Y, Zhang H, Xie W, Zhong L, et al. PGC1β regulates breast tumor growth and metastasis by SREBP1-mediated HKDC1 expression. Front Oncol. 2019;9:290.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ghilardi C, Moreira-Barbosa C, Brunelli L, Ostano P, Panini N, Lupi M, et al. PGC1α/β expression predicts therapeutic response to oxidative phosphorylation inhibition in ovarian cancer. Cancer Res. 2022;82:1423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  CAS  Google Scholar 

  57. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lukey PT, Harrison SA, Yang S, Man Y, Holman BF, Rashidnasab A, et al. A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. Eur Respir J. 2019;53:1801992.

    Article  CAS  PubMed  Google Scholar 

  59. Du J, Chen F, Yu J, Jiang L, Zhou M. The PI3K/mTOR Inhibitor omipalisib suppresses nonhomologous end joining and sensitizes cancer cells to radio- and chemotherapy. Mol Cancer Res. 2021;19:1889–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Taiwan Health Foundation, and the Ministry of Science and Technology, Taiwan (MOST 111-2320-B-002-058 and MOST 108-2320-B-002-050-MY3). We acknowledge the technical supports of the Metabolomics Core Laboratory at the Center of Genomic Medicine, National Taiwan University, and the Immune Research Core of the Department of Medical Research at the National Taiwan University Hospital.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision: L-IL; methodology: C-YT, Y-HF, J-WL; bioinformatics analysis: C-YT, Y-HF; animal experiments: C-YT, D-LO; data curation: C-YT, D-LO; funding acquisition: L-IL. and H-AH; writing—original draft: C-YT; writing—review and editing: L-IL.

Corresponding author

Correspondence to Liang-In Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, CY., Fu, YH., Ou, DL. et al. Anti-leukemia effects of omipalisib in acute myeloid leukemia: inhibition of PI3K/AKT/mTOR signaling and suppression of mitochondrial biogenesis. Cancer Gene Ther 30, 1691–1701 (2023). https://doi.org/10.1038/s41417-023-00675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00675-2

Search

Quick links