Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploration of a screening model for intrahepatic cholangiocarcinoma patients prone to cuproptosis and mechanisms of the susceptibility of CD274-knockdown intrahepatic cholangiocarcinoma cells to cuproptosis

Subjects

Abstract

Intrahepatic cholangiocarcinoma (ICC) is a form of liver cancer with poor long-term survival rates that requires novel therapeutic methods. Our team’s previous research found that ICC patients prone to cuproptosis possessed a more satisfactory long-term prognosis and a more sensitive response to copper carrier Elesclomol. Thus, we aimed to identify new diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explore the associated intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. We employed FU-ICC (n = 255) as the training dataset, and validated our findings using SRRSH-ICC (from our center, n = 65), GSE26566 (n = 104), E-MTAB-6389 (n = 78), and scRNA-seq (n = 14) datasets. Single sample gene set enrichment analysis and subsequent unsupervised cluster analysis was conducted on the training dataset for the pan-programmed cell death gene set (including apoptosis, autophagy, ferroptosis, pyroptosis, necroptosis, and cuproptosis) to define and screen ICC patients prone to cuproptosis. We constructed a nomogram model using weighted gene co-expression network analysis and machine learning algorithms to predict ICC patients prone to cuproptosis, then explored its clinical value with multi-center transcriptome profiling. Furthermore, we validated the hub genes with in vitro and animal experiments to define ICC cells prone to cuproptosis. Ultimately, bulk and single-cell transcriptome profiling were utilized to explore the immune microenvironment of ICC cells prone to cuproptosis. Our nomogram model could help predict ICC patients prone to cuproptosis and possessed excellent prediction efficiency and clinical significance via internal and external verification. In vitro experiments demonstrated that ICC cells with siRNA-mediated knockdown of CD274 (PD-L1) and stimulation with elescomol-CuCl2 were prone to cuproptosis, and CD274-negative ICC cells could be defined as ICC cells prone to cuproptosis. The safety and feasibility of lenti-sh CD274+Elesclomol-CuCl2 as a therapeutic approach for ICC were verified using bioinformatics analysis and animal experiments. Bulk and single-cell transcriptome profiling indicated that the interactions between ICC cells prone to cuproptosis and monocytes/macrophages were particularly relevant. In conclusion, this study systematically and comprehensively explored cuproptosis in ICC for the first time. We constructed precise diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explored the intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. Further work with large prospective cohorts will help verify these conclusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of the study design.
Fig. 2: Screening of ICC patients prone to cuproptosis.
Fig. 3: Screening of hub gene in ICC patients prone to cuproptosis.
Fig. 4: Construction and validation of nomogram model for predicting ICC patients prone to cuproptosis.
Fig. 5: The clinical application of the nomogram model——chemotherapy sensitivity analysis, immune infiltration analysis, and survival analysis.
Fig. 6: The hub genes were validated by in vitro experiments.
Fig. 7: Animal experiments demonstrated that the combination of shCD274 and Elesclomol-CuCl2 made ICC tumor prone to cuproptosis.
Fig. 8: The immune microenvironment of ICC patients prone to cuproptosis explored by single-cell transcriptome profiling.

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Beal EW, Tumin D, Moris D, Zhang XF, Chakedis J, Dilhoff M, et al. Cohort contributions to trends in the incidence and mortality of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2018;7:270–6. https://doi.org/10.21037/hbsn.2018.03.16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149:565–74. https://doi.org/10.1001/jamasurg.2013.5137.

    Article  PubMed  Google Scholar 

  4. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89. https://doi.org/10.1016/j.jhep.2014.01.021.

    Article  PubMed  Google Scholar 

  5. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604. https://doi.org/10.1038/s41575-019-0186-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68:723–50. https://doi.org/10.1002/hep.29913.

    Article  PubMed  Google Scholar 

  7. Lee YT, Wang JJ, Luu M, Noureddin M, Nissen NN, Patel TC, et al. Comparison of clinical features and outcomes between intrahepatic cholangiocarcinoma and hepatocellular carcinoma in the United States. Hepatology. 2021;74:2622–32. https://doi.org/10.1002/hep.32007.

    Article  CAS  PubMed  Google Scholar 

  8. Penzkofer L, Gröger LK, Hoppe-Lotichius M, Baumgart J, Heinrich S, Mittler J, et al. Mixed hepatocellular cholangiocarcinoma: a comparison of survival between mixed tumors, intrahepatic cholangiocarcinoma and hepatocellular carcinoma from a single center. Cancers (Basel). 2023;15:639. https://doi.org/10.3390/cancers15030639.

    Article  PubMed  Google Scholar 

  9. Moris D, Palta M, Kim C, Allen PJ, Morse MA, Lidsky ME. Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current and future therapeutic landscape for clinicians. CA Cancer J Clin. 2023;73:198–222. https://doi.org/10.3322/caac.21759.

    Article  PubMed  Google Scholar 

  10. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:48. https://doi.org/10.1186/s12943-015-0321-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85. https://doi.org/10.1016/j.cell.2017.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110. https://doi.org/10.1186/s13045-020-00946-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61. https://doi.org/10.1126/science.abf0529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Festa RA, Thiele DJ. Copper: an essential metal in biology. Curr Biol. 2011;21:R877–83. https://doi.org/10.1016/j.cub.2011.09.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15:681–9. https://doi.org/10.1038/s41589-019-0291-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong L, Lu D, Chen R, Lin Y, Zhu H, Zhang Z, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell. 2022;40:70–87. https://doi.org/10.1016/j.ccell.2021.12.006.

    Article  CAS  PubMed  Google Scholar 

  17. Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142:1021–31. https://doi.org/10.1053/j.gastro.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  18. Job S, Rapoud D, Dos Santos A, Gonzalez P, Desterke C, Pascal G. et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology. 2020;72:965–81. https://doi.org/10.1002/hep.31092.

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Wang L, Khatib SA, Chang CW, Heinrich S, Dominguez DA, et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol. 2021;75:1397–408. https://doi.org/10.1016/j.jhep.2021.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma L, Heinrich S, Wang L, Keggenhoff FL, Khatib S, Forgues M, et al. Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer. Nat Commun. 2022;13:7533. https://doi.org/10.1038/s41467-022-35291-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. https://doi.org/10.1038/nbt.4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26:1572–3. https://doi.org/10.1093/bioinformatics/btq170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174. https://doi.org/10.1186/s13045-022-01392-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2023. https://doi.org/10.1038/s41575-022-00741-4.

  25. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218. https://doi.org/10.1186/s13059-016-1070-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15:1484–506. https://doi.org/10.1038/s41596-020-0292-x.

    Article  CAS  PubMed  Google Scholar 

  27. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–53. https://doi.org/10.1038/s41586-018-0698-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020;368:620–5. https://doi.org/10.1126/science.aaz8899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22:102–13. https://doi.org/10.1038/s41568-021-00417-2.

    Article  CAS  PubMed  Google Scholar 

  31. Esnaola NF, Meyer JE, Karachristos A, Maranki JL, Camp ER, Denlinger CS. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer. 2016;122:1349–69. https://doi.org/10.1002/cncr.29692.

    Article  PubMed  Google Scholar 

  32. Mazzaferro V, Gorgen A, Roayaie S, Droz Dit Busset M, Sapisochin G. Liver resection and transplantation for intrahepatic cholangiocarcinoma. J Hepatol. 2020;72:364–77. https://doi.org/10.1016/j.jhep.2019.11.020.

    Article  PubMed  Google Scholar 

  33. Zhang H, Yang T, Wu M, Shen F. Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 2016;379:198–205. https://doi.org/10.1016/j.canlet.2015.09.008.

    Article  CAS  PubMed  Google Scholar 

  34. Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics. 2010;2:596–608. https://doi.org/10.1039/c0mt00006j.

    Article  CAS  PubMed  Google Scholar 

  35. Harris ED. Copper homeostasis: the role of cellular transporters. Nutr Rev. 2001;59:281–5. https://doi.org/10.1111/j.1753-4887.2001.tb07017.x.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts EA, Schilsky ML, American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47:2089–111. https://doi.org/10.1002/hep.22261.

    Article  CAS  PubMed  Google Scholar 

  37. Tu X, Qin B, Zhang Y, Zhang C, Kahila M, Nowsheen S, et al. PD-L1 (B7-H1) competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol Cell. 2019;74:1215–26. https://doi.org/10.1016/j.molcel.2019.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, et al. Retinoic acid-related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Res. 2019;79:2604–18. https://doi.org/10.1158/0008-5472.CAN-18-3842.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Xiao X, Ou Y, Cao L, Guo M, Qi C, et al. USP51/PD-L1/ITGB1-deployed juxtacrine interaction plays a cell-intrinsic role in promoting chemoresistant phenotypes in non-small cell lung cancer. Cancer Commun (Lond). 2023. https://doi.org/10.1002/cac2.12460.

  40. Wang S, Li J, Xie J, Liu F, Duan Y, Wu Y, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene. 2018;37:4164–80. https://doi.org/10.1038/s41388-018-0252-x.

    Article  CAS  PubMed  Google Scholar 

  41. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70. https://doi.org/10.1016/j.molcel.2019.09.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22:1264–75. https://doi.org/10.1038/s41556-020-0575-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28. https://doi.org/10.1186/s12943-021-01489-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim RD, Chung V, Alese OB, El-Rayes BF, Li D, Al-Toubah TE, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 2020;6:888–94. https://doi.org/10.1001/jamaoncol.2020.0930.

    Article  PubMed  Google Scholar 

  45. Ueno M, Ikeda M, Morizane C, Kobayashi S, Ohno I, Kondo S, et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol. 2019;4:611–21. https://doi.org/10.1016/S2468-1253(19)30086-X.

    Article  PubMed  Google Scholar 

  46. Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater. 2023;35:e2212267. https://doi.org/10.1002/adma.202212267.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y, Xiao D, Jiang X, Nie C. EREG is the core onco-immunological biomarker of cuproptosis and mediates the cross-talk between VEGF and CD99 signaling in glioblastoma. J Transl Med. 2023;21:28. https://doi.org/10.1186/s12967-023-03883-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng J, Yang H, Haak VM, Yang J, Kipper FC, Barksdale C, et al. Eicosanoid regulation of debris-stimulated metastasis. Proc Natl Acad Sci USA. 2021;118:e2107771118. https://doi.org/10.1073/pnas.2107771118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu L, Zhang R, Deng J, Dai X, Zhu X, Fu Q, et al. Construction of TME and Identification of crosstalk between malignant cells and macrophages by SPP1 in hepatocellular carcinoma. Cancer Immunol Immunother. 2022;71:121–36. https://doi.org/10.1007/s00262-021-02967-8.

    Article  CAS  PubMed  Google Scholar 

  50. Yasui-Kato M, Patlada S, Yokode M, Kamei K, Minami M. EP4 signalling is essential for controlling islet inflammation by causing a shift in macrophage polarization in obesity/type 2 diabetes. Diab Vasc Dis Res. 2020;17:1479164120945675. https://doi.org/10.1177/1479164120945675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang X, Lin L, Lan B, Wang Y, Du L, Chen X, et al. IGF2R-initiated proton rechanneling dictates an anti-inflammatory property in macrophages. Sci Adv. 2020;6:eabb7389. https://doi.org/10.1126/sciadv.abb7389.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Iacona, Ph.D., from Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript. And we thank Figdraw (www.figdraw.com) for generating the Fig. 7A.

Funding

This study was supported by National Natural Science Foundation of China under Grant No. 82072625, Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ22H160011.

Author information

Authors and Affiliations

Authors

Contributions

XL, JJX, ZFS, JWC, and LYT are responsible for the conception, design, and writing of the article. ZFS, JWC, and JHZ are responsible for the data processing and analysis. ZFS, YLW, LYT, JWC, JHZ, YL, and HYP are responsible for collecting the original data. ZFS, XL, and JWC are responsible for reviewing and guiding the revision of the paper. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Yali Wang, Junjie Xu or Xiao Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

This study involving human participants was reviewed and approved by Ethics Committee in Clinical Research of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University (NO. 20201231-46). The data used in this article are all items that must be checked according to medical standards during the hospitalization, and collected retrospectively when designing the study, without adding any additional medical examination or test outside the normal diagnosis and treatment procedures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Cai, J., Tao, L. et al. Exploration of a screening model for intrahepatic cholangiocarcinoma patients prone to cuproptosis and mechanisms of the susceptibility of CD274-knockdown intrahepatic cholangiocarcinoma cells to cuproptosis. Cancer Gene Ther 30, 1663–1678 (2023). https://doi.org/10.1038/s41417-023-00673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00673-4

This article is cited by

Search

Quick links