Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LncRNA CALML3-AS1 modulated by m6A modification induces BTNL9 methylation to drive non-small-cell lung cancer progression

Abstract

Non-small cell lung cancer (NSCLC) is a common and lethal malignancy. The carcinogenic roles of lncRNA CALML3 antisense RNA 1 (CALML3-AS1) have been documented. However, the function and potential mechanisms of CALML3-AS1 in the progression of NSCLC need to be further explored. The molecule expression was assessed by qRT-PCR and Western blot. The subcellular localization of CALML3-AS1 was observed by fluorescence in situ hybridization (FISH). The malignant behaviors of NSCLC cells were evaluated by CCK-8, colony formation, EdU, wound healing and transwell assays. In vivo xenograft tumor and liver metastatic models were established. The molecular mechanisms were investigated by RIP, RNA pull-down and ChIP assays. The methylation level was detected by MSP. Herein, we found that CALML3-AS1 was upregulated, while butyrophilin-like 9 (BTNL9) was downregulated in NSCLC. Functionally, CALML3-AS1 depletion repressed NSCLC cell malignant phenotypes, in vivo tumor growth, and liver metastasis. Mechanistically, AlkB homolog 5 (ALKBH5) enhanced CALML3-AS1 stability via N6-methyladenosine (m6A) demethylation, whereas m6A reader YTH domain-containing 2 (YTHDC2) destabilized CALML3-AS1. Moreover, CALML3-AS1 inhibited BTNL9 transcription and expression through the recruitment of Zeste homolog 2 (EZH2). Rescue experiments demonstrated that BTNL9 downregulation counteracted sh-CALML3-AS1-mediated antitumor effects on NSCLC. Taken together, CALML3-AS1 modulated by ALKBH5 and YTHDC2 in an m6A modification dependent manner drives NSCLC progression via epigenetically repressing BTNL9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upregulation of CALML3-AS1 in NSCLC indicated a poor prognosis.
Fig. 2: CALML3-AS1 knockdown inhibited NSCLC cell growth and metastasis.
Fig. 3: ALKBH5 increased CALML3-AS1 stability via inhibiting m6A modification.
Fig. 4: CALML3-AS1 could be destabilized by YTHDC2 in an m6A dependent manner.
Fig. 5: CALML3-AS1 epigenetically inhibited BTNL9 expression by interaction with EZH2.
Fig. 6: BTNL9 overexpression restrained the malignant phenotypes of NSCLC cells.
Fig. 7: CALML3-AS1 promoted the malignant phenotypes of NSCLC cells via regulating BTNL9.
Fig. 8: Knockdown of CALML3-AS1 delayed NSCLC growth and metastasis in vivo.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  3. Yang Q, Zhu L, Ye M, Zhang B, Zhan P, Li H, et al. Tumor suppressor 4.1N/EPB41L1 is epigenetic silenced by promoter methylation and MiR-454-3p in NSCLC. Front Genet. 2022;13:805960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kapeleris J, Ebrahimi Warkiani M, Kulasinghe A, Vela I, Kenny L, Ladwa R, et al. Clinical applications of circulating tumour cells and circulating tumour DNA in non-small cell lung cancer-an update. Front Oncol. 2022;12:859152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin HC, Li J, Cheng DD, Zhang X, Yu T, Zhao FY, et al. Nuclear export protein CSE1L interacts with P65 and promotes NSCLC growth via NF-kappaB/MAPK pathway. Mol Ther Oncolytics. 2021;21:23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas K, Dehghanpour A, et al. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. Prog Biophys Mol Biol. 2022;177:207–28.

    Article  PubMed  Google Scholar 

  7. Li L, Wei H, Zhang YW, Zhao S, Che G, Wang Y, et al. Differential expression of long non-coding RNAs as diagnostic markers for lung cancer and other malignant tumors. Aging. 2021;13:23842–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu CN, Zhang HY, Liu CL, Wang CC. Upregulation of lncRNA CALML3-AS1 promotes cell proliferation and metastasis in cervical cancer via activation of the Wnt/beta-catenin pathway. Eur Rev Med Pharm Sci. 2019;23:5611–20.

    Google Scholar 

  9. Wang F, Zu Y, Huang W, Chen H, Xie H, Yang Y. LncRNA CALML3-AS1 promotes tumorigenesis of bladder cancer via regulating ZBTB2 by suppression of microRNA-4316. Biochem Biophys Res Commun. 2018;504:171–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Qian Y, Jia G. The detection and functions of RNA modification m(6)A based on m(6)A writers and erasers. J Biol Chem. 2021;297:100973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  PubMed  Google Scholar 

  13. Cao G, Li HB, Yin Z, Flavell RA. Recent advances in dynamic m6A RNA modification. Open Biol. 2016;6:160003.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K, et al. The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol. 2021;38:101801.

    Article  CAS  PubMed  Google Scholar 

  15. Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, et al. Targeting SLC3A2 subunit of system X(C)(-) is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med. 2021;168:25–43.

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Zhou L, Wang Y. ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int. 2020;20:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma W, Liang J, Mo J, Zhang S, Hu N, Tian D, et al. Butyrophilin-like 9 expression is associated with outcome in lung adenocarcinoma. BMC Cancer. 2021;21:1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koczor CA, Lee EK, Torres RA, Boyd A, Vega JD, Uppal K, et al. Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis. Physiol Genomics. 2013;45:597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Yang L, Liu X, Liu L, Liu M, Feng X, et al. lncRNA HOTTIP recruits EZH2 to inhibit PTEN expression and participates in IM resistance in chronic myeloid leukemia. Stem Cells Int. 2022;2022:9993393.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mori K, Inoue N, Fujishiro K, Hori H, Tanaka I. Effects of chronic inhalation of ethylene oxide on the rat testes. J UOEH. 1988;10:427–31.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Tang B, Song J, Yu S, Li Y, Su H, et al. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression. J Exp Clin Cancer Res. 2019;38:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xing CY, Zhang YZ, Hu W, Zhao LY. LINC00313 facilitates osteosarcoma carcinogenesis and metastasis through enhancing EZH2 mRNA stability and EZH2-mediated silence of PTEN expression. Cell Mol Life Sci. 2022;79:382.

    Article  CAS  PubMed  Google Scholar 

  24. Hu X, Tang J, Bao P, Deng W, Wu J, Liang Y, et al. Silencing of long non-coding RNA HOTTIP reduces inflammation in rheumatoid arthritis by demethylation of SFRP1. Mol Ther Nucleic Acids. 2020;19:468–81.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  27. Ginn L, Shi L, Montagna M, Garofalo M. LncRNAs in non-small-cell lung cancer. Noncoding RNA. 2020;6:25.

    PubMed  PubMed Central  Google Scholar 

  28. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bao J, Zhang C, Chen J, Xuan H, Wang C, Wang S, et al. LncRNA JPX targets SERCA2a to mitigate myocardial ischemia/reperfusion injury by binding to EZH2. Exp Cell Res. 2023;427:113572.

    Article  CAS  PubMed  Google Scholar 

  30. Hu Q, Ma H, Chen H, Zhang Z, Xue Q. LncRNA in tumorigenesis of non-small-cell lung cancer: from bench to bedside. Cell Death Discov. 2022;8:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen W, Pu J, Zuo Z, Gu S, Sun J, Tan B, et al. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the LncRNA PVT1. Cancer Cell Int. 2022;22:353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, et al. m(6)A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther. 2022;29:1355–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao S, Sun H, Xu C. YTH Domain: a family of N(6)-methyladenosine (m(6)A) readers. Genomics Proteom Bioinforma. 2018;16:99–107.

    Article  CAS  Google Scholar 

  34. Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, et al. The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol. 2018;19:1352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mo Q, Xu K, Luo C, Zhang Q, Wang L, Ren G. BTNL9 is frequently downregulated and inhibits proliferation and metastasis via the P53/CDC25C and P53/GADD45 pathways in breast cancer. Biochem Biophys Res Commun. 2021;553:17–24.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Z, Liu F. Butyrophilin-Like 9 (BTNL9) suppresses invasion and correlates with favorable prognosis of uveal melanoma. Med Sci Monit. 2019;25:3190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, et al. Role of long noncoding RNAs in the regulation of cellular immune response and inflammatory diseases. Cells. 2022;11:3642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hillyar CR, Kanabar SS, Rallis KS, Varghese JS. Complex cross-talk between EZH2 and miRNAs confers hallmark characteristics and shapes the tumor microenvironment. Epigenomics. 2022;14:699–709.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Q, Zhang W, Yin D, Tang Z, Zhang E, Wu W. Gene amplification-driven lncRNA SNHG6 promotes tumorigenesis via epigenetically suppressing p27 expression and regulating cell cycle in non-small cell lung cancer. Cell Death Discov. 2022;8:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by Hunan Provincial Natural Science Foundation of China (No.2023JJ30970), Changsha Municipal Natural Science Foundation (No.kq2208396) and National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (No. z027002).

Author information

Authors and Affiliations

Authors

Contributions

HZ designed this study. S-QW, J-BZ, L-NW, HL, L-FL, Y-DC, and C-JD collected the materials and performed the experiments. HZ and C-FZ analysed the data and wrote the manuscript. HZ revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Heng Zhang or Chun-Fang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the ethics committee of Xiangya Hospital, Central South University. All the NSCLC patients signed their informed consent. All animal experiments were approved by the Institutional Animal Care and Use Committee of Xiangya Hospital, Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, SQ., Zhu, JB. et al. LncRNA CALML3-AS1 modulated by m6A modification induces BTNL9 methylation to drive non-small-cell lung cancer progression. Cancer Gene Ther 30, 1649–1662 (2023). https://doi.org/10.1038/s41417-023-00670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00670-7

Search

Quick links