Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrative single-cell transcriptome analysis reveals immune suppressive landscape in the anaplastic thyroid cancer

Abstract

The tumor immune microenvironment (TIME) in ATC is a complex and diverse ecosystem. It is essential to have a comprehensive understanding to improve cancer treatment and prognosis. However, TIME of ATC and the dynamic changes with PTC has not been revealed at the single-cell level. Here, we performed an integrative single-cell analysis of PTC and ATC primary tumor samples. We found that immunosuppressive cells and molecules dominated the TIME in ATC. Specifically, the level of infiltration of exhausted CD8+ T cells, and M2 macrophages was increased, and that of NK cells, B cells, and M1 macrophages was decreased. The cytotoxicity of CD8+ T cells, γδT cells, and NK cells was decreased, and immune checkpoint molecules, such as LAG3, PD1, HAVCR2, and TIGIT were highly expressed in ATC. Our findings contribute to the comprehension of TIME in both PTC and ATC, offering insights into the immunosuppressive factors specifically associated with ATC. Targeting these immunosuppressive factors may activate the anti-tumor immune response in ATC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of immune infiltrates in PTC and ATC with scRNA-seq.
Fig. 2: Characterization of T and NK cells.
Fig. 3: The exhausted molecular features of CD8, γδ T cells, and NK cells.
Fig. 4: mIHC detection was performed on tumor tissues from 8 ATC and 8 PTC cases, and 4 indicators were simultaneously detected, including LAG3, PD1, TIM3, and CD8.
Fig. 5: Characterization of B cells.
Fig. 6: Characterization of Myeloid cells.

Similar content being viewed by others

Data availability

All the single-cell and bulk RNA-sequencing data in this study are obtained from public datasets, which are available in the Gene Expression Omnibus (GEO) database.

Code availability

The codes generated during this study are available at the Github repository (https://github.com/fengchaobio/scRNA-seq_TIME_ATC).

References

  1. Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol. 2021;9:225–34.

    Article  PubMed  Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388:2783–95.

    Article  CAS  PubMed  Google Scholar 

  4. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13:644–60.

    Article  CAS  PubMed  Google Scholar 

  5. Jannin A, Escande A, Al Ghuzlan A, Blanchard P, Hartl D, Chevalier B, et al. Anaplastic thyroid carcinoma: an update. Cancers. 2022;14:1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Menicali E, Guzzetti M, Morelli S, Moretti S, Puxeddu E. Immune landscape of thyroid cancers: new insights. Front Endocrinol. 2021;11:1169.

    Article  Google Scholar 

  7. Ahn J, Jin M, Song E, Ryu Y, Song DE, Kim S-Y, et al. Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry. Thyroid. 2021;31:61–7.

    Article  CAS  PubMed  Google Scholar 

  8. Giannini R, Moretti S, Ugolini C, Macerola E, Menicali E, Nucci N, et al. Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-like and a PDTC-like. J Clin Endocrinol Metab. 2019;104:3557–75.

    PubMed  Google Scholar 

  9. Cunha LL, Domingues GAB, Morari EC, Soares FA, Vassallo J, Ward LS. The immune landscape of the microenvironment of thyroid cancer is closely related to differentiation status. Cancer Cell Int. 2021;21:387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Peng W, Li C, Qin R, Zhong Z, Sun C. Identification of an immune-related signature indicating the dedifferentiation of thyroid cells. Cancer Cell Int. 2021;21:231.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yin M, Di G, Bian M. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer. Int Immunopharmacol. 2018;64:333–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ryder M, Ghossein RA, Ricarte-Filho JCM, Knauf JA, Fagin JA. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer. 2008;15:1069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo Y, Yang Y-C, Ma B, Xu W-B, Liao T, Wang Y. Integrated analysis of novel macrophage related signature in anaplastic thyroid cancer. Endocrine. 2022;78:517–30.

    Article  CAS  PubMed  Google Scholar 

  14. Ugolini C, Basolo F, Proietti A, Vitti P, Elisei R, Miccoli P, et al. Lymphocyte and immature dendritic cell infiltrates in differentiated, poorly differentiated, and undifferentiated thyroid carcinoma. Thyroid. 2007;17:389–93.

    Article  PubMed  Google Scholar 

  15. Jung KY, Cho SW, Kim YA, Kim D, Oh B-C, Park DJ, et al. Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. J Pathol Transl Med. 2015;49:318–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qing W, Fang W-Y, Ye L, Shen L-Y, Zhang X-F, Fei X-C, et al. Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid. 2012;22:905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schürch CM, Roelli MA, Forster S, Wasmer M-H, Brühl F, Maire RS, et al. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid. 2019;29:979–92.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018;18:35–45.

    Article  CAS  PubMed  Google Scholar 

  19. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019;176:775.e18–89.e18.

    Article  Google Scholar 

  20. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175:998.e20–1013.e20.

    Article  Google Scholar 

  21. Lavin Y, Kobayashi S, Leader A, Amir E-AD, Elefant N, Bigenwald C, et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell. 2017;169:750.e17–65.e17.

    Article  Google Scholar 

  22. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24:978.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, Guo X, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017;169:1342.e16–56.e16.

    Article  Google Scholar 

  24. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179:829.e20–45.e20.

    Article  Google Scholar 

  25. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72.

    Article  CAS  PubMed  Google Scholar 

  26. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24:986.

    Article  CAS  PubMed  Google Scholar 

  27. Pu W, Shi X, Yu P, Zhang M, Liu Z, Tan L, et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat Commun. 2021;12:6058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo H, Xia X, Kim GD, Liu Y, Xue Z, Zhang L, et al. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci Adv. 2021;7:eabf3657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39:599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573.e29–87.e29.

    Article  Google Scholar 

  31. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329.e4–37.e4.

    Google Scholar 

  32. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chu Y. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat Med. 2023;29:1550–62.

  34. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nat Commun. 2020;11:6268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ying L, Yan F, Meng Q, Yuan X, Yu L, Williams BRG, et al. Understanding immune phenotypes in human gastric disease tissues by multiplexed immunohistochemistry. J Transl Med. 2017;15:206.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li J-P, Wu C-Y, Chen M-Y, Liu S-X, Yan S-M, Kang Y-F, et al. PD-1+CXCR5-CD4+ Th-CXCL13 cell subset drives B cells into tertiary lymphoid structures of nasopharyngeal carcinoma. J Immunother Cancer. 2021;9:e002101.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang Z, Wei X, Pan Y, Xu J, Si Y, Min Z, et al. A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis. 2021;12:1–14.

    PubMed  PubMed Central  Google Scholar 

  38. Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res. 2014;58:234–9.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.

    Article  CAS  PubMed  Google Scholar 

  41. Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557:575–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love–hate relationship. Trends Cancer. 2016;2:747–57.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petitprez F, de Reyniès A, Keung EZ, Chen TW-W, Sun C-M, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577:556–60.

    Article  CAS  PubMed  Google Scholar 

  45. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577:561–5.

    Article  CAS  PubMed  Google Scholar 

  46. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stavnezer J, Guikema JEJ, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park A, Yang Y, Lee Y, Kim MS, Park Y-J, Jung H, et al. Indoleamine-2,3-dioxygenase in thyroid cancer cells suppresses natural killer cell function by inhibiting NKG2D and NKp46 expression via STAT signaling pathways. J Clin Med. 2019;8:E842.

    Article  Google Scholar 

  49. Silk JD, Hermans IF, Gileadi U, Chong TW, Shepherd D, Salio M, et al. Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell–mediated immunotherapy. J Clin Invest. 2004;114:1800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. eBioMedicine. 2020;59:102975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol. 2017;14:662–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Z, Yin L, Zeng Y, Li Y, Chen H, Yin S, et al. Diagnostic and prognostic value of tumor-infiltrating B cells in lymph node metastases of papillary thyroid carcinoma. Virchows Arch. 2021;479:947–59.

    Article  CAS  PubMed  Google Scholar 

  53. MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018;9:4383.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021;53:1334–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20:163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Guangchun Han and Tai Yanhong for the helpful discussions and Qinghai Provincial People’s Hospital for providing pathological tissue samples.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 81572620) and Natural Science Foundation of Shandong Province (grant no. ZR2023MH370).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. conceived this study. Y.C. and X.L. jointly supervised the study. C.F., Y.T., C.Y., L.W., and X.L. contributed to sample and information collection and data generation. Y.C. and C.F. supervised the bioinformatics data processing and analysis. C.F. performed bioinformatics data analysis. Y.T., C.Y., and L.W. assisted with data processing and analysis. X.L. and C.Y. performed IHC staining. Y.C., C.F., and X.L. wrote and revised the manuscript and all co-authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiao Liu or Yuan Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Tao, Y., Yu, C. et al. Integrative single-cell transcriptome analysis reveals immune suppressive landscape in the anaplastic thyroid cancer. Cancer Gene Ther 30, 1598–1609 (2023). https://doi.org/10.1038/s41417-023-00663-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00663-6

Search

Quick links