Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Features of metabolism associated molecular patterns in pancreatic ductal adenocarcinoma

Abstract

Exploring pancreatic ductal adenocarcinoma (PDAC) metabolic landscape would contribute to further understand PDAC from the metabolic perspective and provide more details for precise treatment design. This study aims to describe metabolic landscape of PDAC. Bioinformatics analysis was used to investigate the differences of genome, transcriptome, and proteome levels of metabolic patterns. Three subtypes (MC1, MC2, and MC3) were identified and characterized as distinct metabolic patterns. MC1, enriched in lipid metabolism and amino acid metabolism signatures, was associated with lower abundance of immune cells and stromal cells, and non-response to immunotherapy. MC2 displayed immune-activated characteristics, minor genome alterations and good response to immunotherapy. MC3 was characterized by high glucose metabolism, high pathological grade, immune-suppressed features, poor prognosis, and epithelial-mesenchymal transition phenotype. A ninety-three gene classifier preformed robust prediction and high accuracy (training set: 93.7%; validation set 1: 85.0%; validation set 2: 83.9%). Using random forest classifier, probabilities of three patterns could be predicted on pancreatic cancer cell lines, which could be used to find vulnerable targets in response to both genetic and drug perturbation. Our study revealed features of PDAC metabolic landscape, which could be expected to provide a reference for prognosis prediction and precise treatment design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of systemic design.
Fig. 2: Metabolic and clinical characteristics of distinct PDAC subclasses.
Fig. 3: Immune features of distinct subclasses.
Fig. 4: Prediction of responses to immunotherapy and drug therapies.
Fig. 5: Molecular characteristics of distinct PDAC subclasses.
Fig. 6: Cluster probabilities for drug response and discovery of novel drug targets.

Similar content being viewed by others

Data availability

All data in our study are available upon request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008–20.

    Article  CAS  PubMed  Google Scholar 

  3. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  CAS  PubMed  Google Scholar 

  4. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17:500–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raphael BJ, Hruban RH, Aguirre AJ, Moffitt RA, Yeh JJ, Stewart C, et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32:185–203.

    Article  Google Scholar 

  6. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza S, Hoadley KA, et al. Virtual microdissection identifies distinct tumor-and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Escobar-Hoyos LF, Penson A, Kannan R, Cho H, Pan CH, Singh RK, et al. Altered RNA splicing by mutant p53 activates oncogenic RAS signaling in pancreatic cancer. Cancer Cell. 2020;38:198–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 2018;554:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu CM, Tien SC, Hsieh PK, Jeng YM, Chang MC, Chang YT, et al. High glucose triggers nucleotide imbalance through O-GlcNAcylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell Metab. 2019;29:1334–49.

    Article  CAS  PubMed  Google Scholar 

  11. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20:1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science. 2016;353:1161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature. 2013;504:296–300.

    Article  CAS  PubMed  Google Scholar 

  15. Daemen A, Peterson D, Sahu N, McCord R, Du X, Liu B, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci USA. 2015;112:E4410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karasinska JM, Topham JT, Kalloger SE, Jang GH, Denroche RE, Culibrk L, et al. Altered gene expression along the glycolysis-cholesterol synthesis axis is associated with outcome in pancreatic cancer. Clin Cancer Res. 2020;26:135–46.

    Article  CAS  PubMed  Google Scholar 

  17. Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. 2020;183:1848–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang G, Schetter A, He P, Funamizu N, Gaedcke J, Ghadimi BM, et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS ONE. 2012;7:e31507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang S, He P, Wang J, Schetter A, Tang W, Funamizu N, et al. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res. 2016;76:3838–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang C, Shi S, Qin Y, Meng Q, Hua J, Hu Q, et al. Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut. 2020;69:888–900.

    Article  CAS  PubMed  Google Scholar 

  21. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9:eaah3560.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform. 2020;2:lqaa078.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476:346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cathal S, Renaud G. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;1:367.

  26. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA. 2004;101:4164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping: identifying common subtypes in independent disease data sets. PLoS ONE. 2007;2:e1195.

    Article  PubMed Central  Google Scholar 

  28. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–2605.

  29. Rosario SR, Long MD, Affronti HC, Rowsam AM, Eng KH, Smiraglia DJ. Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat Commun. 2018;9:1–17.

    Article  Google Scholar 

  30. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:1–15.

    Article  Google Scholar 

  31. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:1–20.

    Google Scholar 

  32. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:1–11.

    Article  CAS  Google Scholar 

  34. Hoshida Y. Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS ONE. 2010;5:e15543.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23:181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res. 2019;7:737–50.

    Article  CAS  PubMed  Google Scholar 

  39. Jones S, Zhang X, Parsons DW, Lin JCH, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bolen CR, McCord R, Huet S, Frampton GM, Bourgon R, Jardin F, et al. Mutation load and an effector T-cell gene signature may distinguish immunologically distinct and clinically relevant lymphoma subsets. Blood Adv. 2017;1:1884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 2018;27:977–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  PubMed  Google Scholar 

  48. Dimitrov S, Lange T, Gouttefangeas C, Jensen AT, Szczepanski M, Lehnnolz J, et al. Gαs-coupled receptor signaling and sleep regulate integrin activation of human antigen-specific T cells. J Exp Med. 2019;216:517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi H, Xu H, Chai C, Qin Z, Zhou W. Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. J Clin Lab Anal. 2022;36:e24381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Z, Hu C, Yang Z, Yang M, Fang J, Zhou X. Bioinformatic analysis of prognostic and immune-related genes in pancreatic cancer. Comput Math Methods Med. 2021;2021:1–23.

    Google Scholar 

  51. Gabitova-Cornell L, Surumbayeva A, Peri S, Franco-Barraza J, Restifo D, Weitz N, et al. Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer. Cancer Cell. 2020;38:567–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17:e542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klionsky D, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2016;12:1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell. 2020;37:289–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Supporting Programs of the National Natural Science Foundation of China (Nos. 82073358 and 81871918).

Funding

This work was supported by the Supporting Programs of the National Natural Science Foundation of China (Nos. 82073358 and 81871918).

Author information

Authors and Affiliations

Authors

Contributions

JC and YW contributed to the conception and design, acquisition of data, analysis and interpretation of data, and writing, review, and revision of the manuscript. HJ contributed to conceptualization, resources, supervision, funding acquisition, investigation, project administration, writing, review, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hua Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not required. All data of patients can be accessed from the public database.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Y. & Jiang, H. Features of metabolism associated molecular patterns in pancreatic ductal adenocarcinoma. Cancer Gene Ther 30, 1296–1307 (2023). https://doi.org/10.1038/s41417-023-00639-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00639-6

Search

Quick links