Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small extracellular vesicle TGF-β in cancer progression and immune evasion

Abstract

Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Small EV-TGF-β signaling in the tumor microenvironment.
Fig. 2: Small EV-TGF-β in cancer biology.
Fig. 3: Small EV-TGF-β in tumor immunity.

Similar content being viewed by others

References

  1. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126:1208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li I, Nabet BY. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer. 2019;18:32.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, et al. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer. 2022;21:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu Z-L, Liu J-Y, Chen G. Small extracellular vesicle PD-L1 in cancer: the knowns and unknowns. npj Precis Oncol. 2022;6:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimada Y, Matsubayashi J, Kudo Y, Maehara S, Takeuchi S, Hagiwara M, et al. Serum-derived exosomal PD-L1 expression to predict anti-PD-1 response and in patients with non-small cell lung cancer. Sci Rep. 2021;11:7830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prud’homme GJ. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Investig. 2007;87:1077–91.

    Article  PubMed  Google Scholar 

  9. Padua D, Massagué J. Roles of TGFβ in metastasis. Cell Res. 2009;19:89–102.

    Article  CAS  PubMed  Google Scholar 

  10. Bellomo C, Caja L, Moustakas A. Transforming growth factor β as regulator of cancer stemness and metastasis. Br J Cancer. 2016;115:761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hong C-S, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, et al. Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep. 2017;7:14684.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yen E-Y, Miaw S-C, Yu J-S, Lai I-R. Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am J Cancer Res. 2017;7:2199.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30.

    Article  CAS  PubMed  Google Scholar 

  14. Shelke GV, Yin Y, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, et al. Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles. 2019;8:1650458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ko SY, Naora H. Extracellular Vesicle Membrane-Associated Proteins: Emerging Roles in Tumor Angiogenesis and Anti-Angiogenesis Therapy Resistance. Int J Mol Sci. 2020;21:5418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007;67:7458–66.

    Article  CAS  PubMed  Google Scholar 

  17. Mourskaia AA, Dong Z, Ng S, Banville M, Zwaagstra JC, O’Connor-McCourt MD, et al. Transforming growth factor-β1 is the predominant isoform required for breast cancer cell outgrowth in bone. Oncogene. 2009;28:1005–15.

    Article  CAS  PubMed  Google Scholar 

  18. Haque S, Morris JC. Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccines Immunotherapeutics. 2017;13:1741–50.

    Article  Google Scholar 

  19. Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F. Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ SignalingCancer Exosomes Induce Fibroblast Differentiation into CAFs. Mol Cancer Res. 2018;16:1196–204.

    Article  CAS  PubMed  Google Scholar 

  20. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica. 2011;96:1302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colak S, ten Dijke P. Targeting TGF-β Signaling in Cancer. Trends Cancer. 2017;3:56–71.

    Article  CAS  PubMed  Google Scholar 

  22. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Wang X-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2009;19:71–88.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res. 2009;19:128–39.

    Article  CAS  PubMed  Google Scholar 

  25. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Zhang X, Wang J, Li M, Cao C, Tan J, et al. TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 2017;8:96035.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu H, Huang T, Wang D, Chen L, Lan X, Liu X, et al. Acute lymphoblastic leukemia-derived exosome inhibits cytotoxicity of natural killer cells by TGF-β signaling pathway. 3 Biotech. 2021;11:313.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015;34:290–302.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Zhou Y, Jia Y, Wang C, Zhang M, Xu Z. PRR34-AS1 promotes exosome secretion of VEGF and TGF-β via recruiting DDX3X to stabilize Rab27a mRNA in hepatocellular carcinoma. J Transl Med. 2022;20:1–14.

    Article  Google Scholar 

  31. Nakayama F, Miyoshi M, Kimoto A, Kawano A, Miyashita K, Kamoshida S, et al. Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor β1. Med Mol Morphol. 2022;55:227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raimondo S, Saieva L, Corrado C, Fontana S, Flugy A, Rizzo A, et al. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Commun Signal. 2015;13:1–12.

    Article  Google Scholar 

  33. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinogenesis. 2015;54:554–65.

    Article  CAS  Google Scholar 

  34. Lee AH, Ghosh D, Quach N, Schroeder D, Dawson MR. Ovarian Cancer Exosomes Trigger Differential Biophysical Response in Tumor-Derived Fibroblasts. Sci Rep. 2020;10:8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu J, Qian H, Shen L, Zhang X, Zhu W, Huang L, et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PloS One. 2012;7:e52465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther. 2022;7:296.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    Article  CAS  PubMed  Google Scholar 

  39. Vasaikar SV, Deshmukh AP, den Hollander P, Addanki S, Kuburich NA, Kudaravalli S, et al. EMTome: a resource for pan-cancer analysis of epithelial-mesenchymal transition genes and signatures. Br J Cancer. 2021;124:259–69.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang J, Li J, Zhou X, Zhao X, Huang B, Qin Y. Exosomes Regulate the Epithelial-Mesenchymal Transition in Cancer. Front Oncol. 2022;12:864980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim H, Lee S, Shin E, Seong KM, Jin YW, Youn H, et al. The Emerging Roles of Exosomes as EMT Regulators in Cancer. Cells 2020;9:861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim J, Kim TY, Lee MS, Mun JY, Ihm C, Kim SA. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem Biophys Res. Commun. 2016;478:643–8.

    Article  CAS  PubMed  Google Scholar 

  43. Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, et al. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2014;1839:1256–72.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Yi J, Chen X, Zhang Y, Xu M, Yang Z. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10. Oncol Lett. 2016;11:1527–30.

    Article  CAS  PubMed  Google Scholar 

  45. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid‐derived suppressor cells by tumor exosomes. Int J cancer. 2009;124:2621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol. 2021;22:560–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Du Z, Zhang H, Feng Y, Zhan D, Li S, Tu C, et al. Tumour-derived small extracellular vesicles contribute to the tumour progression through reshaping the systemic immune macroenvironment. Br J Cancer. 2023;128:1249–66.

    Article  CAS  PubMed  Google Scholar 

  49. Wu S-Y, Fu T, Jiang Y-Z, Shao Z-M. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol. 2022;144:58–70.

    Article  CAS  PubMed  Google Scholar 

  51. Visan I. Targeting TGF-β in cancer. Nat Immunol. 2018;19:316.

    CAS  PubMed  Google Scholar 

  52. Ghahremanifard P, Chanda A, Bonni S, Bose P. TGF-β Mediated Immune Evasion in Cancer—Spotlight on Cancer-Associated Fibroblasts. Cancers. 2020;12:3650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee J-C, Lee K-M, Kim D-W, Heo DS. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol. 2004;172:7335–40.

    Article  CAS  PubMed  Google Scholar 

  54. Clayton A, Mitchell JP, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008;180:7249–58.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu X, Qin X, Wang X, Wang Y, Cao W, Zhang J, et al. Oral cancer cell‑derived exosomes modulate natural killer cell activity by regulating the receptors on these cells. Int J Mol Med. 2020;46:2115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao J, Schlößer HA, Wang Z, Qin J, Li J, Popp F, et al. Tumor-derived extracellular vesicles inhibit natural killer cell function in pancreatic cancer. Cancers. 2019;11:874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xia Y, Zhang Q, Zhen Q, Zhao Y, Liu N, Li T, et al. Negative regulation of tumor-infiltrating NK cell in clear cell renal cell carcinoma patients through the exosomal pathway. Oncotarget. 2017;8:37783.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sharma P, Diergaarde B, Ferrone S, Kirkwood JM, Whiteside TL. Melanoma cell-derived exosomes in plasma of melanoma patients suppress functions of immune effector cells. Sci Rep. 2020;10:1–11.

    Google Scholar 

  59. Kim H-D, Kim SY, Kim J, Kim JE, Hong YS, Han B, et al. Dynamic increase of M2 macrophages is associated with disease progression of colorectal cancers following cetuximab-based treatment. Sci Rep. 2022;12:1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 2022;41:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang Y-J, Huang T-H, Yadav VK, Sumitra MR, Tzeng DT, Wei P-L, et al. Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphere-derived exosomal β-catenin/STAT3/miR-1246 cargoes. Am J Cancer Res. 2020;10:2337.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ludwig N, Yerneni SS, Azambuja JH, Pietrowska M, Widłak P, Hinck CS, et al. TGFβ(+) small extracellular vesicles from head and neck squamous cell carcinoma cells reprogram macrophages towards a pro-angiogenic phenotype. J Extracell Vesicles. 2022;11:e12294.

    Article  PubMed  Google Scholar 

  63. Finn O. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012;23:viii6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21:345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang C, Kim S-H, Bianco NR, Robbins PD. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PloS one. 2011;6:e22517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rong L, Li R, Li S, Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol Lett. 2016;11:500–4.

    Article  CAS  PubMed  Google Scholar 

  67. Xie Y, Bai O, Yuan J, Chibbar R, Slattery K, Wei Y, et al. Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-β1 inducing CD8+ T-cell anergy and CD4+ Tr1 cell responses. Cancer Res. 2009;69:7756–66.

    Article  CAS  PubMed  Google Scholar 

  68. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16:356–71.

    Article  CAS  PubMed  Google Scholar 

  69. Wada J, Onishi H, Suzuki H, Yamasaki A, Nagai S, Morisaki T, et al. Surface-bound TGF-β1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-cells in malignant effusions. Anticancer Res. 2010;30:3747–57.

    CAS  PubMed  Google Scholar 

  70. Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, Akao Y. Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-β1-mediated suppression. Oncotarget. 2016;7:27033.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Troyer RM, Ruby CE, Goodall CP, Yang L, Maier CS, Albarqi HA, et al. Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells. Exp Cell Res. 2017;358:369–76.

    Article  CAS  PubMed  Google Scholar 

  72. Bai J, Zhang X, Shi D, Xiang Z, Wang S, Yang C, et al. Exosomal miR-128-3p Promotes Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells by Targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 Signaling. Front Cell Dev Biol. 2021;9:568738.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Q, Li B, Li Q, Wei S, He Z, Huang X, et al. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis. 2018;9:854.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Qu Z, Feng J, Pan H, Jiang Y, Duan Y, Fa Z. Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. OncoTargets Ther. 2019;12:6897.

    Article  CAS  Google Scholar 

  75. Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 2020;19:1–15.

    Article  Google Scholar 

  76. Li Z, Zeng C, Nong Q, Long F, Liu J, Mu Z, et al. Exosomal leucine-rich-alpha2-glycoprotein 1 derived from non-small-cell lung cancer cells promotes angiogenesis via TGF-β signal pathway. Mol Ther-Oncolytics. 2019;14:313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen X, Liu J, Zhang Q, Liu B, Cheng Y, Zhang Y, et al. Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res. 2020;39:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, et al. Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Exp Mol Med. 2020;52:1809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Wang S, Lai Q, Fang Y, Wu C, Liu Y, et al. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop. Cancer Lett. 2020;491:22–35.

    Article  CAS  PubMed  Google Scholar 

  80. Yuan D, Guo T, Zhu D, Ge H, Zhao Y, Huang A, et al. Exosomal lncRNA ATB derived from ovarian cancer cells promotes angiogenesis via regulating miR-204-3p/TGFβR2 axis. Cancer Manag Res. 2022;14:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li B, Chen J, Wu Y, Luo H, Ke Y. Decrease of circARID1A retards glioblastoma invasion by modulating miR-370-3p/TGFBR2 pathway. Int J Biol Sci. 2022;18:5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu H, Mao G, Zheng J, Guo F. Keloid Patient Plasma-Derived Exosomal hsa_circ_0020792 Promotes Normal Skin Fibroblasts Proliferation, Migration, and Fibrogenesis via Modulating miR-193a-5p and Activating TGF-β1/Smad2/3 Signaling. Drug Des, Dev Ther. 2022;16:4223–34.

    Article  Google Scholar 

  83. Liu S, González-Prieto R, Zhang M, Geurink PP, Kooij R, Iyengar PV, et al. Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer MetastasisUCHL1 Promotes TGFβ-Induced Breast Cancer Metastasis. Clin Cancer Res. 2020;26:1460–73.

    Article  CAS  PubMed  Google Scholar 

  84. Tian C, Liu Y, Liu Y, Hu P, Xie S, Guo Y, et al. UCHL1 promotes cancer stemness in triple-negative breast cancer. Pathol, Res Pract. 2022;240:154235.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu AK, Shan YQ, Zhang J, Liu XC, Ying RC, Kong WC. Exosomal NNMT from peritoneum lavage fluid promotes peritoneal metastasis in gastric cancer. Kaohsiung J Med Sci. 2021;37:305–13.

    Article  PubMed  Google Scholar 

  86. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shen T, Miao S, Zhou Y, Yi X, Xue S, Du B, et al. Exosomal AP000439. 2 from clear cell renal cell carcinoma induces M2 macrophage polarization to promote tumor progression through activation of STAT3. Cell Commun Signal. 2022;20:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ni C, Fang Q-Q, Chen W-Z, Jiang J-X, Jiang Z, Ye J, et al. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+ γδ1 Treg cells. Signal Transduct Target Ther. 2020;5:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fu X-H, Li J-P, Li X-Y, Tan Y, Zhao M, Zhang S-F, et al. M2-Macrophage-Derived Exosomes Promote Meningioma Progression through TGF-β Signaling Pathway. J Immunol Res. 2022;2022:8326591.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 2019;38:1–20.

    Article  Google Scholar 

  92. Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology. 2016;5:e1062968.

    Article  PubMed  Google Scholar 

  93. Huang Y, Luo Y, Ou W, Wang Y, Dong D, Peng X, et al. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC. Cancer Cell Int. 2021;21:1–16.

    Article  Google Scholar 

  94. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7:10.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ahuja N, Ashok C, Natua S, Pant D, Cherian A, Pandkar MR, et al. Hypoxia-induced TGF-β–RBFOX2–ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer. 2020;2:zcaa021.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Głuszko A, Szczepański MJ, Whiteside TL, Reichert TE, Siewiera J, Ludwig N. Small extracellular vesicles from head and neck squamous cell carcinoma cells carry a proteomic signature for tumor hypoxia. Cancers. 2021;13:4176.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ji K, Mayernik L, Moin K, Sloane BF. Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Rev. 2019;38:103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ban J-J, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochemical Biophysical Res Commun. 2015;461:76–9.

    Article  CAS  Google Scholar 

  101. Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 2018;65:104–18.

    Article  CAS  PubMed  Google Scholar 

  102. Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PloS one. 2015;10:e0138849.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21:56.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020;20:209–15.

    Article  CAS  PubMed  Google Scholar 

  106. Hong C-S, Muller L, Whiteside TL, Boyiadzis M. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol. 2014;5:160.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Theodoraki M-N, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived exosomes reverse epithelial-to-mesenchymal transition after photodynamic therapy of patients with head and neck cancer. Oncoscience. 2018;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ludwig S, Floros T, Theodoraki M-N, Hong C-S, Jackson EK, Lang S, et al. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck CancerImmune Suppression by Plasma Exosomes in HNC. Clin Cancer Res. 2017;23:4843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu L, Zhang Z, Zhou L, Hu L, Yin C, Qing D, et al. Cancer associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp Cell Res. 2020;391:111956.

    Article  CAS  PubMed  Google Scholar 

  110. Jablonska J, Rist M, Spyra I, Tengler L, Domnich M, Kansy B, et al. Evaluation of Immunoregulatory Biomarkers on Plasma Small Extracellular Vesicles for Disease Progression and Early Therapeutic Response in Head and Neck Cancer. Cells. 2022;11:902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Miguel-Perez D, Russo A, Gunasekaran M, Buemi F, Hester L, Fan X, et al. Baseline extracellular vesicle TGF-β is a predictive biomarker for response to immune checkpoint inhibitors and survival in non-small cell lung cancer. Cancer. 2023;129:521–30.

    Article  PubMed  Google Scholar 

  112. Ludwig N, Yerneni SS, Harasymczuk M, Szczepański MJ, Głuszko A, Kukwa W, et al. TGFβ carrying exosomes in plasma: potential biomarkers of cancer progression in patients with head and neck squamous cell carcinoma. Br J Cancer. 2023;128:1733–41.

    Article  CAS  PubMed  Google Scholar 

  113. Macías M, García-Cortés Á, Torres M, Ancizu-Marckert J, Pascual JI, Díez-Caballero F, et al. Characterization of the perioperative changes of exosomal immune-related cytokines induced by prostatectomy in early-stage prostate cancer patients. Cytokine. 2021;141:155471.

    Article  PubMed  Google Scholar 

  114. Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME, et al. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol cancer. 2021;20:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379–99.

    Article  CAS  PubMed  Google Scholar 

  116. Hosseini R, Asef-Kabiri L, Sarvnaz H, Ghanavatinejad A, Rezayat F, Eskandari N, et al. Blockade of exosome release alters HER2 trafficking to the plasma membrane and gives a boost to Trastuzumab. Clin Transl Oncol. 2023;25:185–98.

    Article  CAS  PubMed  Google Scholar 

  117. Aslan C, Maralbashi S, Kahroba H, Asadi M, Soltani-Zangbar MS, Javadian M, et al. Docosahexaenoic acid (DHA) inhibits pro-angiogenic effects of breast cancer cells via down-regulating cellular and exosomal expression of angiogenic genes and microRNAs. Life Sci. 2020;258:118094.

    Article  CAS  PubMed  Google Scholar 

  118. Borrelli C, Ricci B, Vulpis E, Fionda C, Ricciardi MR, Petrucci MT, et al. Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 Trans-PresentationSenescent MM Promotes IL15-Mediated NK Cell Proliferation. Cancer Immunol Res. 2018;6:860–9.

    Article  CAS  PubMed  Google Scholar 

  119. Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res. 2021;31:1190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 2022;43:833–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eberlein C, Kendrew J, McDaid K, Alfred A, Kang J, Jacobs V, et al. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene. 2013;32:4406–16.

    Article  CAS  PubMed  Google Scholar 

  122. Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PloS one. 2014;9:e90353.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Tolcher AW, Berlin JD, Cosaert J, Kauh J, Chan E, Piha-Paul SA, et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2017;79:673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qin T, Barron L, Xia L, Huang H, Villarreal MM, Zwaagstra J, et al. A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands. Oncotarget. 2016;7:86087.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Investig. 2002;109:1551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dasch J, Pace D, Waegell W, Inenaga D, Ellingsworth L. Monoclonal antibodies recognizing transforming growth factor-beta. Bioactivity neutralization and transforming growth factor beta 2 affinity purification. J Immunol. 1989;142:1536–41.

    Article  CAS  PubMed  Google Scholar 

  127. Liang X, Schnaper HW, Matsusaka T, Pastan I, Ledbetter S, Hayashida T. Anti-TGF-β Antibody, 1D11, Ameliorates Glomerular Fibrosis in Mouse Models after the Onset of Proteinuria. PLoS One. 2016;11:e0155534.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Nam J-S, Terabe M, Mamura M, Kang M-J, Chae H, Stuelten C, et al. An Anti–Transforming Growth Factor β Antibody Suppresses Metastasis via Cooperative Effects on Multiple Cell Compartments. Cancer Res. 2008;68:3835–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huynh LK, Hipolito CJ, Ten, Dijke P. A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules. 2019;9:743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

R.H. conceptualized the work and wrote and extensively revised the paper, N.H., A.A., L.A, and H.S. searched databases and wrote the first draft, B.G., and ME.A. contributed to the scientific content and revision of this paper.

Corresponding authors

Correspondence to Reza Hosseini or Mohammad Esmaeil Akbari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, R., Hosseinzadeh, N., Asef-Kabiri, L. et al. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 30, 1309–1322 (2023). https://doi.org/10.1038/s41417-023-00638-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00638-7

Search

Quick links