Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Olfactomedin 4 produces dysplasia but suppresses metastasis of colon cancer

Abstract

Development of colorectal cancer (CRC) is regulated by a series of genetic and microenvironmental alterations. Olfactomedin 4 (OLFM4) is a secreted glycoprotein that is highly expressed in the gastrointestinal tract and modulates inflammation. However, the role of OLFM4 in CRC is uncertain. Here we aimed to explore the function of OLFM4 in CRC in vivo and in vitro. The mRNA expression of OLFM4 was up-regulated in precursor lesions with dysplasia or ulcerative colitis but was reduced in CRC. OLFM4 neutralizing antibody suppressed inflammation-mediated early-stage CRC formation in an AOM/DSS colitis-associated cancer model. OLFM4 knockdown cells exhibited increased cell proliferation and motility in vitro and in vivo. Ablation of OLFM4 increased tumor growth and metastasis in xenograft experiments. In addition, OLFM4 knockdown cells showed elevated expression of colon cancer stem cell markers including CD133, resulting in increased metastasis via epithelial-mesenchymal transition signaling. This study demonstrated that OLFM4 regulates inflammation and cancer progression differently; ablation of OLFM4 promotes cancer metastasis via stemness and epithelial-mesenchymal transition. These results suggest a new route for controlling cancer progression and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OLFM4 expression is up-regulated in dysplasia and inflamed lesions but down-regulated in colorectal cancer progression.
Fig. 2: OLFM4 neutralizing antibody suppresses inflammation-mediated early-stage colon tumor formation in the AOM/DSS CAC model.
Fig. 3: OLFM4-positive immune cells are reduced by anti-OLFM4.
Fig. 4: OLFM4 depletion increases colon cancer cell proliferation in vitro and in vivo.
Fig. 5: The OLFM4 knockdown cell line shows increased cancer stem cell marker expression.
Fig. 6: OLFM4 neutralizing antibody inhibits metastatic nodule formation.
Fig. 7: OLFM4 ablation promotes cancer cell invasion.
Fig. 8: OLFM4 ablation promotes the epithelial-mesenchymal transition by inflammation.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and Supplementary Data.

References

  1. Dai ZJ, Zhang JQ, Wu Q, Chen J, Liu J, Wang L, et al. The role of microbiota in the development of colorectal cancer. Int J Cancer. 2019;145:2032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cardoso R, Guo F, Heisser T, Hackl M, Ihle P, De Schutter H, et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: an international population-based study. Lancet Oncol. 2021;22:1002–13.

    Article  PubMed  Google Scholar 

  3. Hong SW, Byeon JS. Endoscopic diagnosis and treatment of early colorectal cancer. Intest Res. 2022;20:281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho KR, Vogelstein B. Suppressor gene alterations in the colorectal adenoma-carcinoma sequence. J Cell Biochem. 1992;16G:137–41.

    Article  CAS  Google Scholar 

  5. Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem. 2022;123:215–30.

    Article  CAS  PubMed  Google Scholar 

  6. Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51:27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell. 2017;168:613–28.

    Article  CAS  PubMed  Google Scholar 

  8. Wang XY, Chen SH, Zhang YN, Xu CF. Olfactomedin-4 in digestive diseases: A mini-review. World J Gastroenterol. 2018;24:1881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu W, Liu Y, Zhu J, Wright E, Ding I, Rodgers GP. Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clin Cancer Res. 2008;14:1041–9.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Rodriguez-Canales J, Liu W, Zhu J, Hanson JC, Pack S, et al. Deletion of the olfactomedin 4 gene is associated with progression of human prostate cancer. Am J Pathol. 2013;183:1329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levinsky NC, Mallela J, Opoka AM, Harmon K, Lewis HV, Zingarelli B, et al. The olfactomedin-4 positive neutrophil has a role in murine intestinal ischemia/reperfusion injury. FASEB J. 2019;33:13660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu W, Rodgers GP. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer. Cancer Metastasis Rev. 2016;35:201–12.

    Article  PubMed  Google Scholar 

  13. Gersemann M, Becker S, Nuding S, Antoni L, Ott G, Fritz P, et al. Olfactomedin-4 is a glycoprotein secreted into mucus in active IBD. J Crohns Colitis. 2012;6:425–34.

    Article  PubMed  Google Scholar 

  14. Mannick EE, Schurr JR, Zapata A, Lentz JJ, Gastanaduy M, Cote RL, et al. Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scand J Gastroenterol. 2004;39:1192–200.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003;94:965–73.

    Article  CAS  PubMed  Google Scholar 

  16. Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol. 2022;12:871513.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauss A, et al. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol. 2020;11:1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. 2007;67:4807–15.

    Article  CAS  PubMed  Google Scholar 

  19. van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol. 2018;71:88–91.

    Article  PubMed  Google Scholar 

  20. Yao Y, Zhou Y, Su X, Dai L, Yu L, Deng H, et al. Establishment and characterization of intraperitoneal xenograft models by co-injection of human tumor cells and extracellular matrix gel. Oncol Lett. 2015;10:3450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rico-Leo EM, Alvarez-Barrientos A, Fernandez-Salguero PM. Dioxin receptor expression inhibits basal and transforming growth factor beta-induced epithelial-to-mesenchymal transition. J Biol Chem. 2013;288:7841–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  23. Hofman P, Vouret-Craviari V. Microbes-induced EMT at the crossroad of inflammation and cancer. Gut Microbes. 2012;3:176–85.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dassen H, Punyadeera C, Delvoux B, Schulkens I, Marchetti C, Kamps R, et al. Olfactomedin-4 regulation by estrogen in the human endometrium requires epidermal growth factor signaling. Am J Pathol. 2010;177:2495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hosokawa KT, Hosokawa K, Mikoto T, Mohiuddin M, Yoroidaka T, Mizumaki H, et al. Olfactomedin 4 Inhibits Erythroid Differentiation of Leukemic Cell Lines Induced By TGF-β: A Model of Preferential Commitment of Del(13q) Hematopoietic Stem Cells in Immune-Mediated Bone Marrow Failure. Blood. 2019;134:5000.

    Article  Google Scholar 

  26. Chen Z, Zhang D, Yue F, Zheng M, Kovacevic Z, Richardson DR. The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J Biol Chem. 2012;287:17016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  28. Kim KK, Park KS, Song SB, Kim KE. Up regulation of GW112 Gene by NF kappaB promotes an antiapoptotic property in gastric cancer cells. Mol Carcinog. 2010;49:259–70.

    Article  CAS  PubMed  Google Scholar 

  29. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu W, Yan M, Liu Y, Wang R, Li C, Deng C, et al. Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci. 2010;107:11056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao XZ, Wang GN, Zhao WG, Han J, Diao CY, Wang XH, et al. Blocking OLFM4/HIF-1alpha axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28144.

  32. Luo ZY, Zhang Q, Zhao ZS, Li B, Chen JF, Wang YY. OLFM4 is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. J Cancer Res Clin Oncol. 2011;137:1713–20.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Z, Zhang X, Xing Z, Lv S, Huang L, Liu J, et al. OLFM4 deficiency delays the progression of colitis to colorectal cancer by abrogating PMN-MDSCs recruitment. Oncogene. 2022. https://doi.org/10.1038/s41388-022-02324-8.

  34. Liu W, Li H, Hong SH, Piszczek GP, Chen W, Rodgers GP. Olfactomedin 4 deletion induces colon adenocarcinoma in Apc(Min/+) mice. Oncogene. 2016;35:5237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seko N, Oue N, Noguchi T, Sentani K, Sakamoto N, Hinoi T, et al. Olfactomedin 4 (GW112, hGC-1) is an independent prognostic marker for survival in patients with colorectal cancer. Exp Ther Med. 2010;1:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD, et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 2007;282:17259–71.

    Article  CAS  PubMed  Google Scholar 

  37. Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017;11:805–23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim SH, Lim YJ. The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res. 2022;20:31–42.

    Article  PubMed  Google Scholar 

  39. Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell. 2018;33:954–64.

    Article  CAS  PubMed  Google Scholar 

  40. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 Signaling Enhances TGF-beta Response Through Downregulating BAMBI During Prostatic Hyperplasia. Sci Rep. 2016;6:27051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korean Gastroenterology Fund for Future Development and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C1005322). We would like to thank the donors for their contribution to this study.

Author information

Authors and Affiliations

Authors

Contributions

HWM, SWK, and JHC designed the study; HWM, KCP, and SWK performed experiments; HWM and SWK were involved in data analysis; HWM, DHK, JMK, ISP, JHK, DHS, JHK, XC, and TIK were involved in sample acquisition; JHC and SWK were involved in funding acquisition; HWM, SWK, and JHC wrote the manuscript. All authors contributed to critical revision of the manuscript and approved the final version.

Corresponding authors

Correspondence to Jae Hee Cheon or Seung Won Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H.W., Kim, J.M., Kim, D.H. et al. Olfactomedin 4 produces dysplasia but suppresses metastasis of colon cancer. Cancer Gene Ther 30, 694–703 (2023). https://doi.org/10.1038/s41417-022-00585-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00585-9

Search

Quick links