Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nogo-B receptor increases glycolysis and the paclitaxel resistance of estrogen receptor-positive breast cancer via the HIF-1α-dependent pathway

A Correction to this article was published on 15 November 2022

This article has been updated

Abstract

Chemotherapy can improve the prognosis and overall survival of breast cancer patients, but chemoresistance continues a major problem in clinical. Most breast cancer is estrogen receptor (ER) positive but responds less to neoadjuvant or adjuvant chemotherapy than ER-negative breast cancer. The Nogo-B receptor (NgBR) increases the chemoresistance of ER-positive breast cancer by facilitating oncogene signaling pathways. Here, we further investigated the potential role of NgBR as a novel target to overcome glycolysis-dependent paclitaxel resistance in ER-positive breast cancer. NgBR knockdown inhibited glycolysis and promoted paclitaxel-induced apoptosis by attenuating HIF-1α expression in ER-positive breast cancer cells via NgBR-mediated estrogen receptor alpha (ERα)/hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor-kappa B subunit (NF-κB)/HIF-1α signaling pathways. A ChIP assay further confirmed that NgBR overexpression not only facilitates ERα binding to HIF-1α and GLUT1 genes but also promotes HIF-1α binding to GLUT1, HK2, and LDHA genes, which further promotes glycolysis and induces paclitaxel resistance. In conclusion, our study suggests that NgBR expression is essential for maintaining the metabolism and paclitaxel resistance of ER-positive breast cancer, and the NgBR can be a new therapeutic target for improving chemoresistance in ER-positive breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NgBR and glycolysis-related protein expressions were upregulated in MCF-7/PTX cells.
Fig. 2: NgBR knockdown promoted apoptosis by inhibiting glycolysis in MCF-7/PTX cells.
Fig. 3: E2 treatment and NgBR overexpression promoted glycolysis via the expression of HIF-1α.
Fig. 4: NgBR regulated HIF-1α expression via phosphorylation of NF-κB p65.
Fig. 5: NgBR modulated ERα binding to the promoter region of HIF-1α and GLUT1 genes.
Fig. 6: NgBR modulated HIF-1α binding to the promoter region of GLUT1, HK2, and LDHA genes.

Similar content being viewed by others

Data availability

Please contact the corresponding authors for specific data and information.

Change history

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA: A Cancer J Clin. 2021;71:7–33.

  2. Ramos P, Bentires-Alj M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene. 2015;34:3617–26.

    Article  CAS  PubMed  Google Scholar 

  3. Society AC. Breast cancer facts & figures 2019–2020. Atlanta, GA, USA: American Cancer Society, Inc; 2019.

  4. Waks AG, Winer EP. Breast cancer treatment: a review. J Am Med Assoc. 2019;321:288–300.

    Article  CAS  Google Scholar 

  5. Jin Y, Hu W, Liu T, Rana U, Aguilera-Barrantes I, Kong A, et al. Nogo-B receptor increases the resistance of estrogen receptor positive breast cancer to paclitaxel. Cancer Lett. 2018;419:233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McAndrew NP, Finn RS. Management of ER-positive metastatic breast cancer. Semin Oncol. 2020;47:270–7.

    Article  CAS  PubMed  Google Scholar 

  7. Pondé NF, Zardavas D, Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 2019;16:27–44.

    Article  PubMed  Google Scholar 

  8. Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of growth hormone in breast cancer. Endocrinology. 2017;158:1543–55.

    Article  CAS  PubMed  Google Scholar 

  9. Varghese E, Samuel SM, Liskova A, Samec M, Kubatka P, Busselberg D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers. 2020;12:2252.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sui M, Zhang H, Fan W. The role of estrogen and estrogen receptors in chemoresistance. Curr Medicinal Chem. 2011;18:4674–83.

    Article  CAS  Google Scholar 

  11. Němcová-Fürstová V, Kopperová D, Balušíková K, Ehrlichová M, Brynychová V, Václavíková R, et al. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharmacol. 2016;310:215–28.

    Article  PubMed  Google Scholar 

  12. Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C. Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev. 2012;38:890–903.

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  14. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018;38:1–11.

    Article  PubMed  Google Scholar 

  15. Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:166–77.

    Article  PubMed  Google Scholar 

  16. Wouters BG, van den Beucken T, Magagnin MG, Lambin P, Koumenis C. Targeting hypoxia tolerance in cancer. Drug Resist Updat. 2004;7:25–40.

    Article  CAS  PubMed  Google Scholar 

  17. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Therapeut. 2012;11:1672–82.

    Article  CAS  Google Scholar 

  19. Barbosa AM, Martel F. Targeting glucose transporters for breast cancer therapy: the effect of natural and synthetic compounds. Cancers. 2020;12:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Tao M, Wang T, Wang Z, Xiao J, Ding S, et al. [Knockdown of hexokinase 2 (HK2) inhibits breast cancer cell proliferation and reduces their resistance to fluorouracil]. Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol Immunol. 2021;37:722–7.

    CAS  Google Scholar 

  22. Das CK, Parekh A, Parida PK, Bhutia SK, Mandal M. Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer. Biochim Biophys Acta Mol Cell Res. 2019;1866:1004–18.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer. 2010;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lu Y, Wang L, Ding W, Wang D, Wang X, Luo Q, et al. Ammonia mediates mitochondrial uncoupling and promotes glycolysis via HIF-1 activation in human breast cancer MDA-MB-231cells. Biochem Biophys Res Commun. 2019;519:153–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips JB, et al. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1alpha. Cancer Res. 2016;76:2231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. George AL, Rajoria S, Suriano R, Mittleman A, Tiwari RK. Hypoxia and estrogen are functionally equivalent in breast cancer-endothelial cell interdependence. Mol Cancer. 2012;11:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li YK, Xie YJ, Wu DC, Long SL, Tang S, Mo ZC. NogoB receptor in relevant carcinoma: current achievements, challenges and aims (review). Int J Oncol. 2018;53:1827–35.

    CAS  PubMed  Google Scholar 

  28. Zhao B, Xu B, Hu W, Song C, Wang F, Liu Z, et al. Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial-mesenchymal transition of breast tumor cells. J Proteom. 2015;112:38–52.

    Article  CAS  Google Scholar 

  29. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pula B, Olbromski M, Owczarek T, Ambicka A, Witkiewicz W, Ugorski M, et al. Nogo-B receptor expression correlates negatively with malignancy grade and ki-67 antigen expression in invasive ductal breast carcinoma. Anticancer Res. 2014;34:4819–28.

    CAS  PubMed  Google Scholar 

  31. Yang J, AlTahan A, Jones DT, Buffa FM, Bridges E, Interiano RB, et al. Estrogen receptor-alpha directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc Natl Acad Sci USA 2015;112:15172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miao RQ, Gao Y, Harrison KD, Prendergast J, Acevedo LM, Yu J, et al. Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad Sci USA 2006;103:10997–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao B, Chun C, Liu Z, Horswill MA, Pramanik K, Wilkinson GA, et al. Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood 2010;116:5423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21:498–510.

    Article  CAS  PubMed  Google Scholar 

  35. Zang H, Li Y, Zhang X, Huang G. Circ-RNF111 contributes to paclitaxel resistance in breast cancer by elevating E2F3 expression via miR-140-5p. Thorac Cancer. 2020;11:1891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell. 2014;54:820–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020;11:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang H, Jia D, Zhang B, Yang W, Dong Z, Sun X, et al. Exercise improves cardiac function and glucose metabolism in mice with experimental myocardial infarction through inhibiting HDAC4 and upregulating GLUT1 expression. Basic Res Cardiol. 2020;115:28.

    Article  PubMed  Google Scholar 

  39. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–78.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Groheux D, Majdoub M, Sanna A, de Cremoux P, Hindie E, Giacchetti S, et al. Early metabolic response to neoadjuvant treatment: FDG PET/CT criteria according to breast cancer subtype. Radiology. 2015;277:358–71.

    Article  PubMed  Google Scholar 

  42. Cong Y, Cui Y, Zhu S, Cao J, Zou H, Martin TA, et al. Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-κB/STAT3 signalling pathway in breast cancer cells. Chin J Cancer Res = Chung-kuo yen cheng yen chiu. 2020;32:564–79.

    Article  CAS  PubMed  Google Scholar 

  43. Ren C, Han X, Lu C, Yang T, Qiao P, Sun Y, et al. Ubiquitination of NF-κB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ. 2022;29:381–92.

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Fu L, Liu B, Lin X, Dong Q, Wang E. Ajuba overexpression regulates mitochondrial potential and glucose uptake through YAP/Bcl-xL/GLUT1 in human gastric cancer. Gene. 2019;693:16–24.

    Article  CAS  PubMed  Google Scholar 

  45. Wu Q, Ba-Alawi W, Deblois G, Cruickshank J, Duan S, Lima-Fernandes E, et al. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun. 2020;11:4205.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang T, Zhu X, Wu H, Jiang K, Zhao G, Shaukat A, et al. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: combined administration of polydatin and 2-deoxy-D-glucose. J Cell Mol Med. 2019;23:3711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao T, Jin F, Xiao D, Wang H, Huang C, Wang X, et al. IL-37/ STAT3/ HIF-1α negative feedback signaling drives gemcitabine resistance in pancreatic cancer. Theranostics. 2020;10:4088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin J, Qiu S, Wang P, Liang X, Huang F, Wu H, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J Exp Clin Cancer Res: CR. 2019;38:377.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1alpha-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21:498–510.

    Article  CAS  PubMed  Google Scholar 

  50. Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018;9:4456.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang T, Guo S, Zhu X, Qiu J, Deng G, Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J Cell Mol Med. 2020;24:8430–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao X, Wu Y, Qiao L, Feng X. SENP2 suppresses NF-κB activation and sensitizes breast cancer cells to doxorubicin. Eur J Pharmacol. 2019;854:179–86.

    Article  CAS  PubMed  Google Scholar 

  53. Liang S, Chen Z, Jiang G, Zhou Y, Liu Q, Su Q, et al. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals. Cancer Lett. 2017;386:12–23.

    Article  CAS  PubMed  Google Scholar 

  54. Sui M, Huang Y, Park BH, Davidson NE, Fan W. Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res. 2007;67:5337–44.

    Article  CAS  PubMed  Google Scholar 

  55. Yang J, Jubb AM, Pike L, Buffa FM, Turley H, Baban D, et al. The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 2010;70:6456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang J, AlTahan A, Jones DT, Buffa FM, Bridges E, Interiano RB, et al. Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc Natl Acad Sci USA 2015;112:15172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fisher B, Redmond C, Fisher ER, Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol. 1988;6:1076–87.

    Article  CAS  PubMed  Google Scholar 

  58. Smart E, Semina SE, Frasor J. Update on the role of NFκB in promoting aggressive phenotypes of estrogen receptor-positive breast cancer. Endocrinology. 2020;161:bqaa152.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fumagalli D, Wilson TR, Salgado R, Lu X, Yu J, O’Brien C, et al. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann Oncol. 2016;27:1860–6.

    Article  CAS  PubMed  Google Scholar 

  60. Burstein HJ. Systemic therapy for estrogen receptor-positive, HER2-negative breast cancer. New Engl J Med. 2020;383:2557–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the following projects for supporting this study: National Natural Science Foundation of China (No. 82003173), Jilin Province Department of Finance (JLSCZD2019-030), Health Commission of Jilin Province (No. 2020Q016).

Author information

Authors and Affiliations

Authors

Contributions

CL: conceptualization, data curation, formal analysis, investigation, writing—original draft and writing—review & editing; SL: supervision and methodology; XZ: data curation and validation; CJ: resources and supervision; BZ: resources and supervision; LL: methodology and validation; QRM: conceptualization, supervision, and writing—review and editing; YJ: conceptualization, funding acquisition, resources, supervision and writing—review and editing; ZF: conceptualization, funding acquisition, resources, and writing—review & editing.

Corresponding authors

Correspondence to Qing Robert Miao, Ying Jin or Zhimin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All patients signed informed consent for this study, and their samples were anonymous. The research has been allowed by the Ethics Committee of the First Hospital of Jilin University (2020-066).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, S., Zhang, X. et al. Nogo-B receptor increases glycolysis and the paclitaxel resistance of estrogen receptor-positive breast cancer via the HIF-1α-dependent pathway. Cancer Gene Ther 30, 647–658 (2023). https://doi.org/10.1038/s41417-022-00542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00542-6

This article is cited by

Search

Quick links