Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The microphthalmia-associated transcription factor is involved in gastrointestinal stromal tumor growth

A Correction to this article was published on 18 November 2022

This article has been updated

Abstract

Gastrointestinal stromal tumors (GISTs) are the most common neoplasms of mesenchymal origin, and most of them emerge due to the oncogenic activation of KIT or PDGFRA receptors. Despite their relevance in GIST oncogenesis, critical intermediates mediating the KIT/PDGFRA transforming program remain mostly unknown. Previously, we found that the adaptor molecule SH3BP2 was involved in GIST cell survival, likely due to the co-regulation of the expression of KIT and Microphthalmia-associated transcription factor (MITF). Remarkably, MITF reconstitution restored KIT expression levels in SH3BP2 silenced cells and restored cell viability. This study aimed to analyze MITF as a novel driver of KIT transforming program in GIST. Firstly, MITF isoforms were characterized in GIST cell lines and GIST patients’ samples. MITF silencing decreases cell viability and increases apoptosis in GIST cell lines irrespective of the type of KIT primary or secondary mutation. Additionally, MITF silencing leads to cell cycle arrest and impaired tumor growth in vivo. Interestingly, MITF silencing also affects ETV1 expression, a linage survival factor in GIST that promotes tumorigenesis and is directly regulated by KIT signaling. Altogether, these results point to MITF as a key target of KIT/PDGFRA oncogenic signaling for GIST survival and tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of MITF isoforms in GIST patients.
Fig. 2: MITF silencing reduces KIT, BCL2, and CDK2 expression.
Fig. 3: MITF silencing impairs cell proliferation.
Fig. 4: MITF silencing impairs the cell cycle.
Fig. 5: MITF induces apoptosis by caspases in GIST cells.
Fig. 6: MITF silencing induces ETV1 downregulation in GISTs.
Fig. 7: MITF silencing affects viability and the cell cycle in GIST48B cells.
Fig. 8: MITF silencing causes a reduction in GIST tumor growth.

Similar content being viewed by others

Data availability

The data sets used and analyzed during the current study are available in the article and supplementary files or from the corresponding author at reasonable request.

Change history

References

  1. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG et al. NCCN task force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Cancer Netw 2010;8:S-1-S-41.

  2. Beham AW, Schaefer I-M, Schüler P, Cameron S, Michael Ghadimi B. Gastrointestinal stromal tumors. Int J Colorectal Dis 2012;27:689–700.

    Article  Google Scholar 

  3. Serrano C, George S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin Cancer Res 2020;26:5078–85.

    Article  CAS  Google Scholar 

  4. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472–80.

    Article  CAS  Google Scholar 

  5. Ainsua-Enrich E, Serrano-Candelas E, Álvarez-Errico D, Picado C, Sayós J, Rivera J, et al. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival. J Immunol 2015;194:4309–18.

    Article  CAS  Google Scholar 

  6. Serrano‐Candelas E, Ainsua‐Enrich E, Navinés‐Ferrer A, Rodrigues P, García‐Valverde A, Bazzocco S, et al. Silencing of adaptor protein SH 3 BP2 reduces KIT/PDGFRA receptors expression and impairs gastrointestinal stromal tumors growth. Mol Oncol 2018;12:1383–97.

    Article  Google Scholar 

  7. Oppezzo A, Rosselli F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021;11:1–15.

    Article  Google Scholar 

  8. Kawakami A, Fisher DE. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Investig 2017;97:649–56.

    Article  CAS  Google Scholar 

  9. Kim JH, Jin HM, Kim K, Song I, Youn BU, Matsuo K, et al. The mechanism of osteoclast differentiation induced by IL-1. J Immunol 2009;183:1862–70.

    Article  CAS  Google Scholar 

  10. Zhao H, Zhang J, Shao H, Liu J, Jin M, Chen J, et al. MiRNA-340 inhibits osteoclast differentiation via repression of MITF. Biosci Rep 2017;37:1–8.

    Article  Google Scholar 

  11. Wen B, Li S, Li H, Chen Y, Ma X, Wang J, et al. Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium. Sci Rep 2016;6:1–9.

    Google Scholar 

  12. Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006;12:406–14.

    Article  CAS  Google Scholar 

  13. Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2015;72:1249–60.

    Article  CAS  Google Scholar 

  14. Hartman ML, Czyz M. Pro-survival role of MITF in melanoma. J Invest Dermatol 2015;135:352–8.

    Article  CAS  Google Scholar 

  15. Goding CR, Arnheiter H. MITF—the first 25 years. Genes Dev 2019;33:983–1007.

    Article  CAS  Google Scholar 

  16. Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2021;34:13–27.

    Article  CAS  Google Scholar 

  17. Shiohara M, Shigemura T, Suzuki T, Tanaka M, Morii E, Ohtsu H, et al. MITF-CM, a newly identified isoform of microphthalmia-associated transcription factor, is expressed in cultured mast cells. Int J Lab Hematol 2009;31:215–26.

    Article  CAS  Google Scholar 

  18. Flesher JL, Paterson-Coleman EK, Vasudeva P, Ruiz-Vega R, Marshall M, Pearlman E, et al. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 2020;33:279–92.

    Article  CAS  Google Scholar 

  19. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005;436:117–22.

    Article  CAS  Google Scholar 

  20. Bertolotto C, Lesueur F, Giuliano S, Strub T, De Lichy M, Bille K, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011;480:94–98.

    Article  CAS  Google Scholar 

  21. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011;480:99.

    Article  CAS  Google Scholar 

  22. Cheli Y, Guiliano S, Botton T, Rocchi S, Hofman V, Hofman P, et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 2011;30:2307–18.

    Article  CAS  Google Scholar 

  23. Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 2012;31:2461–70.

    Article  CAS  Google Scholar 

  24. Müller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 2014;5:5712.

    Article  Google Scholar 

  25. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006;20:3426–39.

    Article  CAS  Google Scholar 

  26. Rambow F, Marine JC, Goding CR. Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes Dev 2019;33:1295.

    Article  CAS  Google Scholar 

  27. Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 2010. https://doi.org/10.1038/nature09409.

  28. Ran L, Sirota I, Cao Z, Murphy D, Chen Y, Shukla S, et al. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov 2015;5:304–15.

    Article  CAS  Google Scholar 

  29. Jané-Valbuena J, Widlund HR, Perner S, Johnson LA, Dibner AC, Lin WM, et al. An oncogenic role for ETV1 in melanoma. Cancer Res 2010;70:2075–84.

    Article  Google Scholar 

  30. Ran L, Chen Y, Sher J, Wong EWP, Murphy D, Zhang JQ, et al. FOXF1 defines the core-regulatory circuitry in gastrointestinal stromal tumor. Cancer Discov 2018;8:234–51.

    Article  CAS  Google Scholar 

  31. García-Valverde A, Rosell J, Sayols S, Gómez-Peregrina D, Pilco-Janeta DF, Olivares-Rivas I, et al. E3 ubiquitin ligase atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene. 2021;40:6614–6626.

    Article  Google Scholar 

  32. Vitiello GA, Bowler TG, Liu M, Medina BD, Zhang JQ, Param NJ, et al. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J Clin Invest 2019;129:1863–77.

    Article  Google Scholar 

  33. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15.

    Article  CAS  Google Scholar 

  34. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. https://doi.org/10.48550/arxiv.1207.3907.

  35. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, Mcewen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res 2016;44:e108.

    Article  Google Scholar 

  36. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:1–16.

    Article  Google Scholar 

  37. Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CDM, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 2001;20:5054–8.

    Article  CAS  Google Scholar 

  38. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 2007;26:7560–8.

    Article  CAS  Google Scholar 

  39. Mühlenberg T, Zhang Y, Wagner AJ, Grabellus F, Bradner J, Taeger G, et al. Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res 2009;69:6941–50.

    Article  Google Scholar 

  40. Serrano C, Mariño-Enríquez A, Tao DL, Ketzer J, Eilers G, Zhu M, et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J Cancer 2019;120:612–20.

    Article  CAS  Google Scholar 

  41. Nilsson G, Blom T, Kusche-Gullberg M, Kjellen L, Butterfield JH, Sundström C, et al. Phenotypic characterization of the human mast‐cell line HMC‐1. Scand J Immunol 1994;39:489–98.

    Article  CAS  Google Scholar 

  42. Feoktistova M, Geserick P, Leverkus M. Crystal Violet assay for determining viability of cultured cells. Cold Spring Harb Protoc 2016;2016:pdb.prot087379.

    Article  Google Scholar 

  43. Álvarez-Errico D, Oliver-Vila I, Ainsua-Enrich E, Gilfillan AM, Picado C, Sayós J, et al. CD84 negatively regulates IgE high-affinity receptor signaling in human mast cells. J Immunol 2011;187:5577–86.

    Article  Google Scholar 

  44. Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Checkpoint Controls and Cancer. New Jersey: Humana Press; 2004. p. 301–12.

    Chapter  Google Scholar 

  45. Samatiwat P, Takeda K, Satarug S, Ohba K, Kukongviriyapan V, Shibahara S. Induction of MITF expression in human cholangiocarcinoma cells and hepatocellular carcinoma cells by cyclopamine, an inhibitor of the Hedgehog signaling. Biochem Biophys Res Commun 2016;470:144–9.

    Article  CAS  Google Scholar 

  46. Tsujimura T, Morii E, Nozaki M, Hashimoto K, Moriyama Y, Takebayashi K, et al. Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice. Blood 1996;88:1225–33.

    Article  CAS  Google Scholar 

  47. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 2002;109:707–18.

    Article  CAS  Google Scholar 

  48. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 2004;6:565–76.

    Article  CAS  Google Scholar 

  49. Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D’Amaré AR, Burley SK, Sanders Zimring DC, et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 1994;8:256–63.

    Article  Google Scholar 

  50. Tshori S, Sonnenblick A, Yannay-Cohen N, Kay G, Nechushtan H, Razin E. Microphthalmia transcription factor isoforms in mast cells and the heart. Mol Cell Biol 2007;27:3911.

    Article  CAS  Google Scholar 

  51. Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S, et al. MITF – a controls branching morphogenesis and nephron endowment. PLoS Genet 2017;13:1–25.

    Article  Google Scholar 

  52. Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018;25:46–55.

    Article  CAS  Google Scholar 

  53. Haq R, Yokoyama S, Hawryluk EB, Jönsson GB, Frederick DT, McHenry K, et al. BCL2A1 is a lineage-specific anti-apoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci USA 2013;110:4321–6.

    Article  CAS  Google Scholar 

  54. Li X, Dou J, You Q, Jiang Z. Inhibitors of BCL2A1/Bfl-1 protein: potential stock in cancer therapy. Eur J Med Chem 2021;220:113539.

    Article  CAS  Google Scholar 

  55. Hu B, Mitra J, van den Heuvel S, Enders GH. S and G 2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol 2001;21:2755–66.

    Article  CAS  Google Scholar 

  56. Bačević K, Lossaint G, Achour TN, Georget V, Fisher D, Dulić V. Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep 2017; 7. https://doi.org/10.1038/s41598-017-12868-5.

  57. Lee Y-N, Brandal S, Noel P, Wentzel E, Mendell JT, McDevitt MA, et al. KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood 2011;117:3629–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the Cytomics core facility of the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) for their technical support.

Funding

This study has been funded by grants from the Spanish Ministry of Science, Innovation and Universities and European Regional Development Fund/European Social Fund "Investing in your future": RTI2018-096915-B100 (M.M.) and PID2021-122898OB-100 (M.M.); PERIS SLT006/17/221 (C.S.), ISCIII PI19_01271 (C.S.) and ISCIII FI20/00275 (D.G.-P.).

Author information

Authors and Affiliations

Authors

Contributions

E.P.-P., E.S.-C. and M.M. conceived the experiments and wrote the manuscript, E.P.-P. and A.G.V. performed the experiments, A.N.F., M.G, J.R. and D.G.-P. provided technical support, C.S. provided reagents and technical support, and M.M. secured funding. All authors reviewed the manuscript.

Corresponding author

Correspondence to Margarita Martín.

Ethics declarations

Competing interests

C.S. has received research funding (institution) from Karyopharm, Pfizer, Inc, Deciphera Pharmaceuticals, and Bayer AG; consulting fees (advisory role) from CogentBio, Immunicum AB, Deciphera Pharmaceuticals, and Blueprint Medicines; payment for lectures from PharmaMar, Bayer AG and Blueprint Medicines; and travel grants from PharmaMar, Pfizer, Bayer AG, Novartis, and Lilly. The remaining authors have declared that no conflict of interest exists.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proaño-Pérez, E., Serrano-Candelas, E., García-Valverde, A. et al. The microphthalmia-associated transcription factor is involved in gastrointestinal stromal tumor growth. Cancer Gene Ther 30, 245–255 (2023). https://doi.org/10.1038/s41417-022-00539-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00539-1

This article is cited by

Search

Quick links