Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer

Subjects

Abstract

The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ATAD2 displays a G2/M gene signature.
Fig. 2: ATAD2 facilitates mitotic progression in ovarian cancer.
Fig. 3: ATAD2 is transactivated by MYBL2.
Fig. 4: ATAD2 is essential for MYBL2-driven cell proliferation in ovarian cancer.
Fig. 5: Loss of ATAD2 decreases the MYBL2 protein stability.
Fig. 6: Coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels in ovarian cancer patients.
Fig. 7: Hyperactivation of the MYBL2-ATAD2 signaling in high-grade serous, TP53-mutant and drug-resistant OCs.
Fig. 8: Disrupting the MYBL2-ATAD2 signaling by ATAD2 ablation inhibits ovarian cancer growth in vivo.
Fig. 9: Pharmacological inhibition of the MYBL2-ATAD2 axis destroys both drug sensitive and resistant OCs.
Fig. 10: Schematic diagram for the role and mechanism of the MYBL2-ATAD2 signaling in cancer proliferation.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  Google Scholar 

  2. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Prim. 2016;2:16061.

    Article  Google Scholar 

  3. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–96.

    Article  Google Scholar 

  4. Lee JY, Kim S, Kim YT, Lim MC, Lee B, Jung KW et al. Changes in ovarian cancer survival during the 20 years before the era of targeted therapy. BMC Cancer. 2018;18:601.

  5. Bartoletti M, Musacchio L, Giannone G, Tuninetti V, Bergamini A, Scambia G, et al. Emerging molecular alterations leading to histology-specific targeted therapies in ovarian cancer beyond PARP inhibitors. Cancer Treat Rev. 2021;101:102298.

    Article  CAS  Google Scholar 

  6. Matthews HK, Bertoli C, de Bruin R. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74–88.

    Article  CAS  Google Scholar 

  7. Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 2017;52:638–62.

    Article  CAS  Google Scholar 

  8. Müller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res. 2014;42:10331–50.

    Article  Google Scholar 

  9. Fischer M, Quaas M, Steiner L, Engeland K. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res. 2016;44:164–74.

    Article  CAS  Google Scholar 

  10. Fischer M, Grossmann P, Padi M, DeCaprio JA. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Res. 2016;44:6070–86.

    Article  CAS  Google Scholar 

  11. Jin Y, Qi G, Chen G, Wang C, Fan X. Association between B-Myb proto-oncogene and the development of malignant tumors. Oncol Lett. 2021;21:166.

    Article  CAS  Google Scholar 

  12. Cicirò Y, Sala A. MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis. 2021;10:19.

    Article  Google Scholar 

  13. Musa J, Aynaud MM, Mirabeau O, Delattre O, Grünewald TG. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis. 2017;8:e2895.

    Article  CAS  Google Scholar 

  14. Luo Y, Ye GY, Qin SL, Yu MH, Mu YF, Zhong M. ATAD2 overexpression identifies colorectal cancer patients with poor prognosis and drives proliferation of cancer cells. Gastroenterol Res Pract. 2015;2015:936564.

    Article  Google Scholar 

  15. Wang JH, Yu TT, Li Y, Hao YP, Han L, Xu KY, et al. Silence of ATAD2 inhibits proliferation of colorectal carcinoma via the Rb-E2F1 signaling. Eur Rev Med Pharmacol Sci. 2020;24:6055–63.

    Google Scholar 

  16. Zheng L, Li T, Zhang Y, Guo Y, Yao J, Dou L, et al. Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer. Oncol Rep. 2015;33:2337–44.

    Article  CAS  Google Scholar 

  17. Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V, et al. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene. 2010;29:5171–81.

    Article  CAS  Google Scholar 

  18. Ciró M, Prosperini E, Quarto M, Grazini U, Walfridsson J, McBlane F, et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 2009;69:8491–8.

    Article  Google Scholar 

  19. Huang J, Yang J, Lei Y, Gao H, Wei T, Luo L, et al. An ANCCA/PRO2000-miR-520a-E2F2 regulatory loop as a driving force for the development of hepatocellular carcinoma. Oncogenesis. 2016;5:e229.

    Article  CAS  Google Scholar 

  20. Liu Q, Liu H, Li L, Dong X, Ru X, Fan X, et al. ATAD2 predicts poor outcomes in patients with ovarian cancer and is a marker of proliferation. Int J Oncol. 2020;56:219–31.

    CAS  Google Scholar 

  21. Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: signaling cascades and therapeutic initiatives. Life Sci. 2021;276:119322.

    Article  CAS  Google Scholar 

  22. Baggiolini A, Callahan SJ, Montal E, Weiss JM, Trieu T, Tagore MM, et al. Developmental chromatin programs determine oncogenic competence in melanoma. Science. 2021;373:eabc1048.

    Article  CAS  Google Scholar 

  23. Liu J, Li C, Wang J, Xu D, Wang H, Wang T, et al. Chromatin modifier MTA1 regulates mitotic transition and tumorigenesis by orchestrating mitotic mRNA processing. Nat Commun. 2020;11:4455.

    Article  CAS  Google Scholar 

  24. Zhou X, Ji H, Ye D, Li H, Liu F, Li H, et al. Knockdown of ATAD2 inhibits proliferation and tumorigenicity through the Rb-E2F1 pathway and serves as a novel prognostic indicator in gastric cancer. Cancer Manag Res. 2020;12:337–51.

    Article  CAS  Google Scholar 

  25. Krakstad C, Tangen IL, Hoivik EA, Halle MK, Berg A, Werner HM, et al. ATAD2 overexpression links to enrichment of B-MYB-translational signatures and development of aggressive endometrial carcinoma. Oncotarget. 2015;6:28440–52.

    Article  Google Scholar 

  26. Kalashnikova EV, Revenko AS, Gemo AT, Andrews NP, Tepper CG, Zou JX, et al. ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res. 2010;70:9402–12.

    Article  CAS  Google Scholar 

  27. Nelson L, Tighe A, Golder A, Littler S, Bakker B, Moralli D, et al. A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nat Commun. 2020;11:822.

    Article  CAS  Google Scholar 

  28. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14:5198–208.

    Article  CAS  Google Scholar 

  29. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  30. Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, et al. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2009;2:34.

    Article  Google Scholar 

  31. Konstantinopoulos PA, Fountzilas E, Pillay K, Zerbini LF, Libermann TA, Cannistra SA, et al. Carboplatin-induced gene expression changes in vitro are prognostic of survival in epithelial ovarian cancer. BMC Med Genomics. 2008;1:59.

    Article  Google Scholar 

  32. Liu Q, Sui R, Li R, Miao J, Liu J. Biological characteristics of Taxol‑resistant ovarian cancer cells and reversal of Taxol resistance by adenovirus expressing p53. Mol Med Rep. 2015;11:1292–7.

    Article  CAS  Google Scholar 

  33. Murakami H, Ito S, Tanaka H, Kondo E, Kodera Y, Nakanishi H. Establishment of new intraperitoneal paclitaxel-resistant gastric cancer cell lines and comprehensive gene expression analysis. Anticancer Res. 2013;33:4299–307.

    CAS  Google Scholar 

  34. Oza AM, Estevez-Diz M, Grischke EM, Hall M, Marmé F, Provencher D, et al. A biomarker-enriched, randomized phase II trial of adavosertib (AZD1775) plus paclitaxel and carboplatin for women with platinum-sensitive TP53-mutant ovarian cancer. Clin Cancer Res. 2020;26:4767–76.

    Article  CAS  Google Scholar 

  35. Fernández-Montalván AE, Berger M, Kuropka B, Koo SJ, Badock V, Weiske J, et al. Isoform-selective ATAD2 chemical probe with novel chemical structure and unusual mode of action. ACS Chem Biol. 2017;12:2730–6.

    Article  Google Scholar 

  36. Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzym Inhib Med Chem. 2020;35:713–25.

    Article  CAS  Google Scholar 

  37. Wang AQ, Lv M, Xu YH, Xie PM, Dong YY. MiR-200b-5p inhibits proliferation of ovarian cancer cells by targeting ATAD2 and regulating PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24:9860–8.

    Google Scholar 

  38. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    Article  Google Scholar 

  39. Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25:114–32.

    Article  CAS  Google Scholar 

  40. Uxa S, Bernhart SH, Mages C, Fischer M, Kohler R, Hoffmann S, et al. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res. 2019;47:9087–103.

    Article  CAS  Google Scholar 

  41. Iness AN, Felthousen J, Ananthapadmanabhan V, Sesay F, Saini S, Guiley KZ, et al. The cell cycle regulatory DREAM complex is disrupted by high expression of oncogenic B-Myb. Oncogene. 2019;38:1080–92.

    Article  CAS  Google Scholar 

  42. Uxa S, Castillo-Binder P, Kohler R, Stangner K, Müller GA, Engeland K. Ki-67 gene expression. Cell Death Differ. 2021;28:3357–70.

    Article  CAS  Google Scholar 

  43. Jin Y, Zhu H, Cai W, Fan X, Wang Y, Niu Y et al. B-Myb is up-regulated and promotes cell growth and motility in non-small cell lung cancer. Int J Mol Sci. 2017;18:860.

  44. Santilli G, Schwab R, Watson R, Ebert C, Aronow BJ, Sala A. Temperature-dependent modification and activation of B-MYB: implications for cell survival. J Biol Chem. 2005;280:15628–34.

    Article  CAS  Google Scholar 

  45. Tarasov KV, Tarasova YS, Tam WL, Riordon DR, Elliott ST, Kania G, et al. B-MYB is essential for normal cell cycle progression and chromosomal stability of embryonic stem cells. PLoS ONE. 2008;3:e2478.

    Article  Google Scholar 

  46. Knight AS, Notaridou M, Watson RJ. A Lin-9 complex is recruited by B-Myb to activate transcription of G2/M genes in undifferentiated embryonal carcinoma cells. Oncogene. 2009;28:1737–47.

    Article  CAS  Google Scholar 

  47. Osterloh L, von Eyss B, Schmit F, Rein L, Hübner D, Samans B, et al. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J. 2007;26:144–57.

    Article  CAS  Google Scholar 

  48. Revenko AS, Kalashnikova EV, Gemo AT, Zou JX, Chen HW. Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol. 2010;30:5260–72.

    Article  CAS  Google Scholar 

  49. Morozumi Y, Boussouar F, Tan M, Chaikuad A, Jamshidikia M, Colak G, et al. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J Mol Cell Biol. 2016;8:349–62.

    Article  CAS  Google Scholar 

  50. Wang T, Perazza D, Boussouar F, Cattaneo M, Bougdour A, Chuffart F et al. ATAD2 controls chromatin-bound HIRA turnover. Life Sci Alliance. 2021;4:e202101151.

  51. Lazarchuk P, Hernandez-Villanueva J, Pavlova MN, Federation A, MacCoss M, Sidorova JM. Mutual balance of histone deacetylases 1 and 2 and the acetyl reader ATAD2 regulates the level of acetylation of histone H4 on nascent chromatin of human cells. Mol Cell Biol. 2020;40:e00421−19.

  52. Lombardi LM, Ellahi A, Rine J. Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7. Proc Natl Acad Sci USA. 2011;108:E1302–1311.

    Article  Google Scholar 

  53. Shahnejat-Bushehri S, Ehrenhofer-Murray AE. The ATAD2/ANCCA homolog Yta7 cooperates with Scm3HJURP to deposit Cse4CENP-A at the centromere in yeast. Proc Natl Acad Sci USA. 2020;117:5386–93.

    Article  CAS  Google Scholar 

  54. Parikh N, Hilsenbeck S, Creighton CJ, Dayaram T, Shuck R, Shinbrot E, et al. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types. J Pathol. 2014;232:522–33.

    Article  CAS  Google Scholar 

  55. Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015;15:668–79.

    Article  CAS  Google Scholar 

  56. Liu C, Hou J, Shan F, Wang L, Lu H, Ren T. Long non-coding RNA CRNDE promotes colorectal carcinoma cell progression and paclitaxel resistance by regulating miR-126-5p/ATAD2 Axis. Onco Targets Ther. 2020;13:4931–42.

    Article  CAS  Google Scholar 

  57. De Angelis PM, Svendsrud DH, Kravik KL, Stokke T. Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer. 2006;5:20.

    Article  Google Scholar 

  58. Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, et al. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res. 2014;12:539–49.

    Article  CAS  Google Scholar 

  59. Killock D. WEE1 inhibition after platinum resistance. Nat Rev Clin Oncol. 2021;18:194.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (No. 82002754 and 82172913).

Author information

Authors and Affiliations

Authors

Contributions

JL, JM, and YG designed and conceived the study. QL, HL, and XH performed the experiments and generated the majority of the data. XF, ZX, RY, JY, and GA interpreted the data. QL and HL performed the bioinformatics analyses. QL and JL drafted the manuscript. JL and JM reviewed and edited the manuscript. All authors have read and approved the final version of this manuscript.

Corresponding authors

Correspondence to Yang Ge, Jinwei Miao or Jian Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, H., Huang, X. et al. A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer. Cancer Gene Ther 30, 192–208 (2023). https://doi.org/10.1038/s41417-022-00538-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00538-2

Search

Quick links